设函数f(x)在[0,正无穷)上连续,单调不减且f(0)>=0,试证 F(x)=1/x*∫(0到x)t^n*f(t)dt x>0 0 x=0证明.在[0,正无穷)上连续且单调不减(其中n大于0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:35:44
设函数f(x)在[0,正无穷)上连续,单调不减且f(0)>=0,试证 F(x)=1/x*∫(0到x)t^n*f(t)dt x>0 0 x=0证明.在[0,正无穷)上连续且单调不减(其中n大于0)
xQJ@~Lb4[I} Hz E{أmS?R,T4 57!$-$kQ<,3}|UdgLJ0$ sn0(8IW@xGQЂF' NMHN%PYR;OC4lVKlUi*PD:vv^_ʄ_ j(p,Y nN Պ_ӍY

设函数f(x)在[0,正无穷)上连续,单调不减且f(0)>=0,试证 F(x)=1/x*∫(0到x)t^n*f(t)dt x>0 0 x=0证明.在[0,正无穷)上连续且单调不减(其中n大于0)
设函数f(x)在[0,正无穷)上连续,单调不减且f(0)>=0,试证 F(x)=1/x*∫(0到x)t^n*f(t)dt x>0 0 x=0
证明.在[0,正无穷)上连续且单调不减(其中n大于0)

设函数f(x)在[0,正无穷)上连续,单调不减且f(0)>=0,试证 F(x)=1/x*∫(0到x)t^n*f(t)dt x>0 0 x=0证明.在[0,正无穷)上连续且单调不减(其中n大于0)
分子为积分,分母为x
因此F(x)必然可导
求导:
F'(x)=(x^(n+1)f(x)-∫(0到x)t^n*f(t)dt)/x^2
判断导函数分子正负号:
设g(t)=t^nf(t)
=>
x^(n+1)f(x)-∫(0到x)t^n*f(t)dt
=x*g(x)-∫(0到x)g(t)dt
有积分中值定理:
=x*g(x)-x*g(η)
0