在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列..在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列,并求{an}的通项公式.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 01:29:30
在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列..在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列,并求{an}的通项公式.
xRN@YBJ!. I]j$)FTa!"11V <3 Dl좹s{νs\6 -G~+ATMc̴3FUv"ˌwψ ,^{ETlYTHI)%xp':Zwg_tRyr7eܑ_=|k2@M܄O[֜'Zȿۢ%j4=NWY%@Vg.!|V[ qDuqu&vE{seޗQiyҸfbԵ|KƠ`j&'-wԇw]^U۠ `ڎX@5l˴#e).=WG DPzƁpbFDQX $b{Kx 5vt"kZUJ'8@

在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列..在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列,并求{an}的通项公式.
在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列..
在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列,并求{an}的通项公式.

在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列..在数列{an}中,a1=3,an=2a(n-1)+n-2(n大等于2,且n属于N正) 证明数列{an+n}是等比数列,并求{an}的通项公式.
两边同加n得
a(n)-n=2[a(n-1)+n-1] (此为递推公式)
所以{an+n}是等比数列
所以 a(n) + n=2^(n-1)(a1 + 1) =2^(n+1)
即 a(n)=2^(n+1) - n
^为次方的意思

an+n=2[a(n-1)+(n-1)]即{an+n}是等比数列,比为2
an=2的(n+1)次方-n

由题意知an=2a(n-1)+n-2。则an+n=2an-1+2n-2=2(an-1+n-1)。an-1+n-1=2(an-2+n-2)所以an/an-1=2。这是等比数列。比值为2。 带入新的数列中得a1=4。根据等比数列的公式得an=2∧(n+1)意为2的(n+1)次方。 则原an=2∧(n-1)-n