lim(x->∞)[(x+2)/(x-1)]^mx=e^(-4) 则m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 17:29:23
lim(x->∞)[(x+2)/(x-1)]^mx=e^(-4) 则m
xQ0kxl#,x6R*xT5R4ba=ya}At60H&LHc BD9D֢4 sv}`qǩ14o)>F2 A"xE,5V^gaQp[8?~QVbcqJZ(gAPGQ64eJS4e:dY1ġudh啰Fy-"sfz,~rz<׆vR8u

lim(x->∞)[(x+2)/(x-1)]^mx=e^(-4) 则m
lim(x->∞)[(x+2)/(x-1)]^mx=e^(-4) 则m

lim(x->∞)[(x+2)/(x-1)]^mx=e^(-4) 则m
[(x+2)/(x-1)]^mx
=[(x-1+3)/(x-1)]^mx
=[1+3/(x-1)]^mx
令a=(x-1)/3
x=3a+1
[1+3/(x-1)]^mx
=(1+1/a)^m(3a+1)
=(1+1/a)^3ma*(1+1/a)
=[(1+1/a)^a]^(3m)*(1+1/a)
x趋于0则a趋于0,所以1+1/a极限是1
[(1+1/a)^a]^(3m)极限=e^(3m)
所以3m=-4
m=-4/3

因为lim(x->∞)(1+1/x)^x=e^x
所以lim(x->∞)([(x+2)/(x-1)]^mx=lim(x->∞)([1+3/(x-1)]^[(x-1)/3 *3mx/(x-1)]=lim(x->∞)(e^[3mx/(x-1)]
因为lim(x->∞)(x/(x-1))=1
所以3m=-4