一道均值不等式问题已知a.b.c均为正数,且a b c=1,求证1/(a b) 1(b c) 1/(c a)大于等于9/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:24:12
一道均值不等式问题已知a.b.c均为正数,且a b c=1,求证1/(a b) 1(b c) 1/(c a)大于等于9/2
x){es۟6yΧ{_N_rь7=4Q/I/(dǮgk?AɎ) I ɶ:66XhT0)}dDͧK?4HZ$ ,Oe+ lEg{k д{fAmxИĘh'i#lY H;H-ưHlPó} ;f/S6>p?7,~O:m`bQݠuC%$z7iIPiqu6<ٽ($ف"{N

一道均值不等式问题已知a.b.c均为正数,且a b c=1,求证1/(a b) 1(b c) 1/(c a)大于等于9/2
一道均值不等式问题
已知a.b.c均为正数,且a b c=1,求证1/(a b) 1(b c) 1/(c a)大于等于9/2

一道均值不等式问题已知a.b.c均为正数,且a b c=1,求证1/(a b) 1(b c) 1/(c a)大于等于9/2
题目应为:已知a、b、c均为正数,且a+b+c=1,求证:1/(a+b)+1(b+c)+1/(c+a)大于等于9/2
证明:因为a、b、c均为正数
由柯西不等式得
[(a+b)+(b+c)+(c+a)][1/(a+b)+1(b+c) 1/(c+a)]>=9
即2(a+b+c)[1/(a+b)+1(b+c) 1/(c+a)]>=9
又因为a+b+c=1
所以1/(a+b)+1(b+c)+1/(c+a)大于等于9/2

一道均值不等式问题已知a.b.c均为正数,且a b c=1,求证1/(a b) 1(b c) 1/(c a)大于等于9/2 一道高中均值不等式问题,已知a>b>0,则a^2+6/[b(a-b)]的最小值为多少? 均值不等式证明题已知a,b,c,d均为正数,求证:b^2/a+c^2/b+d^2/c+a^2/b>=a+b+c+d 高二均值不等式,已知a,b,c都为正数,求证:(a+b+c)(1/(a+b)+1/(b+c)+1/(a+c))>=9/2已知a,b,c都为正数,求证:(a+b+c)(1/(a+b)+1/(b+c)+1/(a+c))>=9/2用均值不等式,谢谢了 一道均值不等式求最值问题已知正数a,b,且4a^2+b^2=4,求y=√[a^2*(1+b^2)]的最大值答案是5/4,要有具体过程,希望答案对了再发过程, 均值不等式的一道题已知a,b为正数,且a^2+(b^2)/2 =1,求a乘根号下(1+b^2)的最大值以及达到最大值时,a,b的值 柯西、均值不等式的简单问题- -已知a+b+c=1且abc都为正数.求(a+1/a)2+(b+1/b)2+(c+1/c)2的最小值已知a+b+c=1且abc都为正数.求(a+1/a)2+(b+1/b)2+(c+1/c)2的最小值原式=a2+2+1/a2+b2+2+1/b2+c2+2+1/c2=(a2+b2+c2)+(1/a2+1/b2 问一道不等式的证明题已知a,b,c均为正数,求证:2[(a+b)/2-(ab)^(1/2)] 均值不等式问题一个若正数a,b满足ab=a+b+3,则ab的取值范围为多少?请写出过程.谢谢各位 设a,b,c为正数且a+b+c=1,证明[a+(1/a)]^2+[b+(1/b)]^2+[c+(1/c)]^2>=100/3用柯西不等式或均值不等式证明 一道不等式的证明题已知a,b,c均为正数,且a+b+c=1,求证4<(3a+1)½+(3b+1)½+(3c+1)½≤3×2½ 关于一道不等式,已知a,b-c均为正数,且a+b+c=1,求根号下(a+1)+根号下(b+1)+根号下(c+1的最大值) 均值不等式问题设a,b,c都是正数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b) a +b+ c 的均值不等式是? 不等式问题若a.b.c为正数,求证a3+b3+c3>=3abc 若为正数a.b,ab=a+b+3.求ab的最小值,用均值不等式怎么做? 有关基本不等式的解题思路例如:已知abc均为正数,且a+b+c=1,求证4 高中均值不等式习题.求详解.要尽快~1.已知正数.a,b.满足ab=a+b+3.求ab的范围.2.a.b,c.均为正实数.且.a(a+b+c)+bc=4-2根号3、(符号不会打……)则2a+b+c的最小值是?要详解.如果还能告诉我具体的均