如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 15:57:49
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明
xXnW~j%׳o4}j6H_I؜,P(PQh>_yY}㘥 R~{ q o2rmnMgk%S+?Y_fdqpn<;Sm5IZ~@Lռcwgk"lJyQ޸|VH[Ǖx֝?\]ߛjh̾:[wzD=O/뻏k]?xn73 Ns jθ}}l3S}w/v!*Y_>I4g都$n.U$X^so3S?7s}TO_2~eSt >R;I  0  ^UE$H_]^Mm_iMQ}l6ȱ>skUCYdIULNS^-ɨh,c/I{y7V8&E [ yk NٚRoN3e`ģ ,.L fsuڊѵ3{L-iJ,BM,(XY8.e &OZ@&eӤeT`]ei91,8Vg90rգ,qjFVcx` %Y dY`pq!L̢ PCZn6Is4o:%X,ęuj&'O/Ac)"tGYB߷w]kQ29 p/'kj&*|xJ&@ i21 ƀ^u叢eNVʰh'4(`~scTuNF{ѹ6{{x{Kl͸r2x7Gȭy7ak]4/SqwܷR[s!(5Ž]MC la v$Oԏ{6RKH`bBE]v>ߟRShJ5Z))ԡ;>0P֕Z^*l{D_u?NHksmcԖQzBw#W+FsԂG{ :/"&^Ez --# yB0)zJ?l{wX*U#?ar&: +.EаHx>O>q*kxg t. 0"Y>?|юE&Dχ)e

如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.
(1)四边形ACEF是平行四边形吗?说明理由;
(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;
(3)四边形ACEF有可能是正方形吗?为什么?
注意:不能用中位线或之后的知识

如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明
(1)四边形ACEF是平行四边形;
证明:∵DE垂直平分BC,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形;
(2)当∠B=30°时,四边形ACEF为菱形;
证明:要使得平行四边形ACEF为菱形,则AC=CE即可,
∵CE= 12AB,
∴AC= 12AB即可,
在Rt△ABC中,∠ACB=90°,
∴当∠B=30°时,AB=2AC,
故∠B=30°时,四边形ACEF为菱形;
(3)四边形ACEF不可能是正方形,
因为由已知,∠ACB=90°,
∴∠ACE<∠ACB,
即∠ACE<90°,不能为直角,
所以四边形ACEF不可能是正方形.

(1)∵∠ACB=90°,FD⊥BC,
∴∠ACB=∠FDB=90°,
∴DF∥AC,
又∵EF=AC,
∴四边形EFAC是平行四边形,
∴AF=CE;
(2)当∠B=30° 时四边形EFAC是菱形,
∵点E在BC的垂直平分线上,
∴DB=DC=12BC,BE=EC,
∴∠B=∠ECD=30°,
∵DF∥AC,

全部展开

(1)∵∠ACB=90°,FD⊥BC,
∴∠ACB=∠FDB=90°,
∴DF∥AC,
又∵EF=AC,
∴四边形EFAC是平行四边形,
∴AF=CE;
(2)当∠B=30° 时四边形EFAC是菱形,
∵点E在BC的垂直平分线上,
∴DB=DC=12BC,BE=EC,
∴∠B=∠ECD=30°,
∵DF∥AC,
∴△BDE∽△BCA,
∴BE/BA=BD/BC=1/2,即BE=1/2AB,
∴AE=CE
又∵∠ECA=90°-30°=60°,
∴△AEC是等边三角形
∴CE=AC,
∴四边形EFAC是菱形;
(3)不可能.
若四边形EFAC是正方形,则E与D重合,A与C重合,不可能有∠B=30°

收起

(1)四边形ACEF是平行四边形!AF=CE,(2)(3)不可能!因为,EC不能垂直AC !……(1)看不懂,好像“三角形BED=三角形EDC,所以,

全部展开

(1)四边形ACEF是平行四边形!AF=CE,(2)(3)不可能!因为,EC不能垂直AC !

收起

(1)证明:由题意知∠FDC=∠DCA=90°,
∴EF∥CA,
∴∠FEA=∠CAE,
∵AF=CE=AE,
∴∠F=∠FEA=∠CAE=∠ECA.
又∵AE=EA,
在△AEC和△EAF中,

∠F=∠ECA∠FEA=∠CAEEA=AE​
∴△AEC≌△EAF(AAS),
∴EF=CA,
∴四...

全部展开

(1)证明:由题意知∠FDC=∠DCA=90°,
∴EF∥CA,
∴∠FEA=∠CAE,
∵AF=CE=AE,
∴∠F=∠FEA=∠CAE=∠ECA.
又∵AE=EA,
在△AEC和△EAF中,

∠F=∠ECA∠FEA=∠CAEEA=AE​
∴△AEC≌△EAF(AAS),
∴EF=CA,
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.
证明:∵∠B=30°,∠ACB=90°,
∴AC=12AB,
∵DE垂直平分BC,
∴DE是△ABC的中位线,
∴E是AB的中点,
∴BE=CE=AE,
又∵AE=CE,
∴AE=CE=12AB,
又∵AC=12AB,
∴AC=CE,
∴四边形ACEF是菱形.

收起

《实验班》上有!

(1)四边形ACEF是平行四边形;
证明:∵DE垂直平分BC,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形;
(2)当∠B...

全部展开

(1)四边形ACEF是平行四边形;
证明:∵DE垂直平分BC,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形;
(2)当∠B=30°时,四边形ACEF为菱形;
证明:要使得平行四边形ACEF为菱形,则AC=CE即可,
∵CE= 12AB,
∴AC= 12AB即可,
在Rt△ABC中,∠ACB=90°,
∴当∠B=30°时,AB=2AC,
故∠B=30°时,四边形ACEF为菱形;
(3)四边形ACEF不可能是正方形,
因为由已知,∠ACB=90°,
∴∠ACE<∠ACB,an=0&si=1&pt=360se%5Fik#
即∠ACE<90°,不能为直角,
所以四边形ACEF不可能是正方形. http://zhidao.baidu.com/question/335803268.html?

收起

(1)四边形ACEF是平行四边形;
证明:∵DE垂直平分BC,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形;
(2)当∠B...

全部展开

(1)四边形ACEF是平行四边形;
证明:∵DE垂直平分BC,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形;
(2)当∠B=30°时,四边形ACEF为菱形;
证明:要使得平行四边形ACEF为菱形,则AC=CE即可,
∵CE= 12AB,
∴AC= 12AB即可,
在Rt△ABC中,∠ACB=90°,
∴当∠B=30°时,AB=2AC,
故∠B=30°时,四边形ACEF为菱形;
(3)四边形ACEF不可能是正方形,
因为由已知,∠ACB=90°,
∴∠ACE<∠ACB,
即∠ACE<90°,不能为直角,
所以四边形ACEF不可能是正方形.

收起

已知如图在RT△ABC中,∠ACB=90°,CA=CB 已知如图在RT△ABC中,∠ACB=90°,CA=CB 如图,在△ABC中,∠B=∠ACB,CD平分∠ACB,∠BDC=75°,求∠A的度数 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图,在△ABC中,∠A=2∠B,AB=2AC,求证:∠ACB=90°感激不尽 如图,在三角形abc中,角acb=90 如图,在△ABC中,∠ACB=75°,∠B=60°,BC=2√3,求S△ABC. 如图,已知在△ABC中,角ACB=90°,M为AB中点,DM⊥AB,CD平分∠ACB求证MD=AM 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于 在Rt△ABC中,AB=4,∠ACB=90°,∠ABC=30°,如图,将 △ABC放在平面直角坐标系中,使点C与坐标原点O重合,在Rt△ABC中,AB=4,∠ACB=90°,∠ABC=30°,如图,将 △ABC放在平面直角坐标系中, 使点C与坐标原点O重合,A,B 如图,在三角形ABC中,∠A=60°,∠B=40°,CD平分∠ACB,求∠ACB和∠ADC的度数. 如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点 如图,在△ABC中,∠B=∠ACD,∠BCD=35°,∠A=25°,求∠B和∠ACB度数 1.如图,在△ABC中,BD、CD分别平分∠ABC和∠ACB,则∠D=90°+?∠A2.如图,在△ABC中,∠B的平分线与∠C的外角平分线交于点D,则D=?∠A3.如图,在△ABC中,∠ABC与∠ACB的外角平分线教育点D,则∠D=90°-?∠A问号 已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B'C,A'B'分别交AB于D,E 如图,在△ABC和△CDB中,∠ACB=∠CBD=90°,AC=a,BC=b.当BD与a,b之间满足怎样的关系式时,△ABC∽△CDB? 如图,在△ABC中.∠A=40°,∠B=60°,CD平分∠ACB,求∠ACD,∠BDC的度数-