计算:(2^2+1)(2^4+1)(2^8+1)……(2^32+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 09:43:00
计算:(2^2+1)(2^4+1)(2^8+1)……(2^32+1)
xTmK@*AFlcu5"`ې z;0i/"DDpw W&s$AظpK~r#ad5} H o=0yk?nS C,A]Y֓dsXۊ$Kwܯԡ]ۄ Y29Vf27(9:VbưeZ=gz@OCġ،nL0~8 hSY;DI߷p.\B^C o_n6]&vQMHx*lLbu1{ P {aφA/dwBcRǖOͫB=

计算:(2^2+1)(2^4+1)(2^8+1)……(2^32+1)
计算:(2^2+1)(2^4+1)(2^8+1)……(2^32+1)

计算:(2^2+1)(2^4+1)(2^8+1)……(2^32+1)
原式=(2-1)(2+1)(2²+1)(2^4+1)(2^8+1)……(2^32+1)/[(2-1)(2+1)] 反复运用平方差公式
=(2²-1)(2²+1)(2^4+1)(2^8+1)……(2^32+1)/3
=(2^4-1)(2^4+1)(2^8+1)……(2^32+1)/3
=(2^8-1)(2^8+1)……(2^32+1)/3
=(2^16-1)……(2^32+1)/3
=(2^64-1)/3

(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)/(2^2-1)=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)/(2^2-1)=(2^8-1)(2^8+1)(2^16+1)(2^32+1)/(2^2-1)……=(2^64-1)&#...

全部展开

(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)/(2^2-1)=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)/(2^2-1)=(2^8-1)(2^8+1)(2^16+1)(2^32+1)/(2^2-1)……=(2^64-1)/3原式=(2^64-1)+1=2^642^1=22^2=42^3=82^4=162^5=322^6=64……尾数2t46866四个一循环2^64中64是4的倍数swae尾数是6

收起