已知函数f(x)=ax^3+(a-1)x^2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:34:33
已知函数f(x)=ax^3+(a-1)x^2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证
xTn@KZ,lPGF aG!R"AJ&2)zg/ܱTV]+ܹsl`+^Ǿ:5=fgXɆY/t  z;[uE`$Vթў (G|uHrA[sMD;R|^b\;l.8 5\[︜ʩN@8r [ mΥē}}(7.ܲmPZ=Q{#9@Y;_'{I~/:r2[Jb3$*CGh BF[5;"[:d2қƄԫĄ%BUCN8P9b(sdPV>b3eyGEIhsnrBP510GB8.TM#/\wpN;ob+?i

已知函数f(x)=ax^3+(a-1)x^2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证
已知函数f(x)=ax^3+(a-1)x^2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证

已知函数f(x)=ax^3+(a-1)x^2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证
函数是关于原点中心对称,所以是奇函数.故有f(x)=-f(-x)代入解得
(a-1)^2+b=0,所以a=1,b=0.
则f(x)=x^3-48x
求导可得f'(x)=3x^2-48在区间(-4,4)时,
f'(x)

函数的图象关于原点成中心对称
所以f(-x)=-f(x),f(0)=0的b=0且原式为2(a-1)x^2=0,得a=1
所以原式为f(x)=x^3-48x对其求导后f'(x)=3x^2-48可得f(x)在[-4,4]为减函数。

因为f(x)是奇函数,所以
f(0)=0
b=0
f(x)=ax³+(a-1)x²+48(a-2)x
f(-x)= - ax³+(a-1)x² -48(a-2)
f(x)+f(-x)=0
(a-1)x²=0
a=1
f(x)=x³-48x
对任意的
-4≤x1...

全部展开

因为f(x)是奇函数,所以
f(0)=0
b=0
f(x)=ax³+(a-1)x²+48(a-2)x
f(-x)= - ax³+(a-1)x² -48(a-2)
f(x)+f(-x)=0
(a-1)x²=0
a=1
f(x)=x³-48x
对任意的
-4≤x1y1-y2=(x1³-x2³)-48(x1-x2)
=(x1-x2)(x1²+x1x2+x2²-48)
因为 -4≤x1所以
(x1-x2)<0
x1²≤16
x1x2<16
x2²≤16
(x1²+x1x2+x2²-48)<0
y1-y2>0
y1>y2
所以函数f(x)在[-4,4]上单调减

收起