关于X的方程 x的平方减ax减a大于0的解为任意实数,则实数a的取值范围是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 16:46:24
关于X的方程 x的平方减ax减a大于0的解为任意实数,则实数a的取值范围是?
xRN@|!@R' Kb@(R}߶|vQ x=4322t^sr:sg[xNr뵩5r: j[#^u4Mٍ#,K%"9.l VP ẃz_)R~x)&*3aކ dE1K_=#˩ԪZlbwM .Z6"D$Ix J$+HLJ_%;ʐy٪XC:u?Rk͸o}4ƊtѤ7n(m_! <4 &C" oȱeK8

关于X的方程 x的平方减ax减a大于0的解为任意实数,则实数a的取值范围是?
关于X的方程 x的平方减ax减a大于0的解为任意实数,则实数a的取值范围是?

关于X的方程 x的平方减ax减a大于0的解为任意实数,则实数a的取值范围是?
x^2-ax-a>0 解为任意实数
所以 函数图像都在x轴的上方
因为函数图像开口向上,所以只要保证函数与x轴没有交点即可
即 △=a^2+4a<0
=a(a+4)<0
-4所以 -4

把它作为一个函数画图就是说此方程无解 △=a^2+4a<0
=a(a+4)<0
-4所以 -4

x^2-ax-a>0
已知图象开口向上,解为任意实数即解属于R
画图知图象与x轴没有交点
a^2-4(-a)=a^2+4a<0
a(a+4)<0
-4