椭圆x²/36+y²/9=1的一条弦被A(4,2)平分,那么这条弦所在的直线方程为什么.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:21:55
椭圆x²/36+y²/9=1的一条弦被A(4,2)平分,那么这条弦所在的直线方程为什么.
xUN@~H*[fzYTd/۫%UJnn@R(TUh)BhB~,0Wn66CO;̷ߌ'Lxp¶J_99eG'Ԋ6/caF&κ笶0q]xYúǶZmzc7j-^?aW)8w߯RFZ ]-FĕϪM87m<)ш;X\D%f49Ee0E fs [Gl}H5ᇨ;B'"IJu/7K.0fFWڎ1;Y[@j@_LNrKR4ݪ_[d`g)0{?4kNd,+l/Bkxp*# YvS]W$`A A~9~ՈnT,C5͝(i 9&ALNG䲍N^ 0A I8 ˔&

椭圆x²/36+y²/9=1的一条弦被A(4,2)平分,那么这条弦所在的直线方程为什么.
椭圆x²/36+y²/9=1的一条弦被A(4,2)平分,那么这条弦所在的直线方程为什么.

椭圆x²/36+y²/9=1的一条弦被A(4,2)平分,那么这条弦所在的直线方程为什么.
设为y-2=k(x-4)
y=kx+(2-4k)
代入椭圆x²+4y²=36
(4k²+1)x²+8k(2-4k)x+(2-4k)²-36=0
x1+x2=-8k(2-4k)/(4k²+1)
中点横坐标=(x1+x2)/2=4
-4k(2-4k)/(4k²+1)=4
-2k=1
k=-1/2
所以x+2y-8=0

设直线方程为Y=KX+B,由于过点(4,2),所以将点的坐标代入,有2=4K+B,即B=2-4K。
这样,直线方程变为Y=KX+(2-4K)。
椭圆的弦在上述直线上,该直线与椭圆应该有两个交点,联立直线方程和椭圆方程求交点。
即将直线方程的Y=KX+(2-4K)代入椭圆方程X2+4Y2-36=0,有:
Y2=(KX+(2-4K))2=K2X2+(2-4K)2+2(2...

全部展开

设直线方程为Y=KX+B,由于过点(4,2),所以将点的坐标代入,有2=4K+B,即B=2-4K。
这样,直线方程变为Y=KX+(2-4K)。
椭圆的弦在上述直线上,该直线与椭圆应该有两个交点,联立直线方程和椭圆方程求交点。
即将直线方程的Y=KX+(2-4K)代入椭圆方程X2+4Y2-36=0,有:
Y2=(KX+(2-4K))2=K2X2+(2-4K)2+2(2-4K)KX
4Y2=4(KX+(2-4K))2=4K2X2+4(2-4K)2+8(2-4K)KX
X2+4Y2-36= X2+4(KX+(2-4K))2=4K2X2+4(2-4K)2+8(2-4K)KX-36=0
得到:(1+4K2)X2+8(2-4K)KX+4(2-4K)2-36=0
从中可以解出两个交点的X坐标X1和X2,由于该两交点连线的中点为已知,其X坐标为4,
故:4=( X1+X2)/2=(-8(2-4K)K)/(2(1+4K2))=( -4(2-4K)K)/( 1+4K2)= ( -4(2K-4K2))/( 1+4K2)
即:1=-(2K-4K2)/( 1+4K2),1+4K2=4K2-2K,1=-2K,K=-1/2
将K值代回直线方程,得到:Y=-X/2+(2+4/2)= -X/2+4
答案:所求的直线方程是:Y=-X/2+4

收起