在四棱锥P-ABCD中,PA垂直平面ABCD,底面ABCD为正方形,且PA=AD=2,E、F分别为棱AD、PC的终点.1)求异面直线EF和PB所成角的大小;2)求证:平面PCE垂直平面PBC;3)求二面角E-PC-D的大小.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 20:45:23
在四棱锥P-ABCD中,PA垂直平面ABCD,底面ABCD为正方形,且PA=AD=2,E、F分别为棱AD、PC的终点.1)求异面直线EF和PB所成角的大小;2)求证:平面PCE垂直平面PBC;3)求二面角E-PC-D的大小.
xUMoFCk,r)[(Cd򗤸? %pI7$]^zI͛7oVkNzx9w [䂹<ތ{jL{c8h*oOX8Fٰ+L|nےr:6,D\wkoN F4ޔM@>–v\3jT#o7y 쭼lz+:=mϺ_&G^IBK._r?FU٭柶h79 KQܮ0Qa; rWwMk,6n- yxs.ۮpit 57xy0W?]JYG 3НƮi(;2)PDS*4(z{w#||7 ol xwKG'FRa6FDS?_WU傹l{=z$Yp2Y% zcR¾>w9Jxx?|X^ ?`upjW ]E$n-E{?ӶLM}0mDN{t(M5^BcF#)9~ F$ NmE,J(&!qkW`JzZ Ay!q'BT*1YŽk3ɓg0uRj0$ ѵT5qG-&h/U _h{hTzKa-<փ*@Aq-j{Wݲl"[NzQ?V9R,=x $TV% C6]:K*+Ves̆r\  (}[NxD1ys S [Ny9Pj{۱dkt^{u=TPr~)9T["mvdģ7Ө9 :ȚJJWB-uZ|ݏk'F*

在四棱锥P-ABCD中,PA垂直平面ABCD,底面ABCD为正方形,且PA=AD=2,E、F分别为棱AD、PC的终点.1)求异面直线EF和PB所成角的大小;2)求证:平面PCE垂直平面PBC;3)求二面角E-PC-D的大小.
在四棱锥P-ABCD中,PA垂直平面ABCD,底面ABCD为正方形,且PA=AD=2,E、F分别为棱AD、PC的终点.
1)求异面直线EF和PB所成角的大小;
2)求证:平面PCE垂直平面PBC;
3)求二面角E-PC-D的大小.

在四棱锥P-ABCD中,PA垂直平面ABCD,底面ABCD为正方形,且PA=AD=2,E、F分别为棱AD、PC的终点.1)求异面直线EF和PB所成角的大小;2)求证:平面PCE垂直平面PBC;3)求二面角E-PC-D的大小.
1.取BC中点G,连接FG,EG,则有FG‖PB,EG‖AB,由正方形各边长以及PA的长很容易求出AC=2√2,PC=2√3,EG=2,FG=√2,PAB=45度,所以∠FGA=45度,而EF与PB所成的角即为∠EFG,在三角形EFG中,EG=2,FG=√2,∠PAB=45=45度,运用余弦定理可求出EF=√2,所以EFG为等腰直角三角形,∠EFG为直角,即所求角度为90度
2.连接CE,PE,由PA垂直面ABCD,可很容易求得PE=CE=√5,所以三角形PEC为等腰三角形,F为斜边PC中点,则由EF⊥PC,又由第1问已证EF⊥FG,PC,FG显然为面PCB中的两条相交直线,所以又EF⊥面PCB,而EF在面PCE中,所以有面PCE⊥面PBC
3.找出二面角E-PC-D是求解的关键,F点是两面交线PC上的点,且有EF⊥交线PC,EF属于面EPC,故只要找到面DPC上垂直于PC且与PC相交于F点的直线,即可与EF构成所求的二面角,设其为x
过F点做FH⊥PC,并交CD于H,则∠EFH即为需要求的x,由PA⊥面ABCD可以得出PA⊥CD,而CD⊥AD,所以有CD⊥面PAD,所以CD⊥PD,三角形PDC是以∠PDC为直角的直角三角形,前面已求出PC=2√3,CD=2,于是有cos∠PCD=CD/PC=√3/3,而在直角三角形CFH中,∠CFH=90度,于是有cos∠PCD=FC/CH,而FC的值为CP的一半,为√3,所以可求出CH=3,另求出FH=√6,这说明H位于CD延长线上,有DH=1,而HE可通过直角三角形HDE已知两个直角边求得为HE=√2,故∠EFH所在的三角形EFH三边皆已求得,为EH=√2,EF=√2,FH=√6,根据余弦定理可求出cos∠EFH=√3/2,于是∠EFH=30度,即二面角E-PC-D为30度

在四棱锥P-ABCD中,底面ABCD是菱形,PA垂直平面ABCD,AB=1.角BAD=60度.求证平面PAC垂直平面PBD 在四棱锥P-ABCD中,ABCD是正方形,PA垂直平面ABCD,PA=AB=a.求二面角P-CD-A的大小;求四棱锥的全面积;求点C到平面PBD的距离. 在四棱锥P-ABCD中,底面ABCD是矩形,PA垂直平面ABCD,E,F分别是AB,PD的中点.求证:AF平行平面PEC 在四棱锥P-ABCD中,PA垂直平面ABCD,AB⊥BC,AB⊥AD,且PA在四棱锥P-ABCD中,PA垂直平面ABCD,AB⊥BC,AB⊥AD,且PA=AB=BC=1/2AD=1,求PB与CD所成的角, 在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,M为PC的中点,PD=AB,求证PA平行平面MBD 高一几何证明题在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,M,N分别是AB,PC的中点,PA=AD=a.求证:平面PMC垂直于平面PCD 已知如图四棱锥P-ABCD中,ABCD是正方形,PA垂直于平面ABCD,则在四棱锥侧面四个三角形中,互相垂直的面有几组 如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积 几道空间几何题1.四棱锥P-ABCD中,PA垂直于平面ABCD,底面ABCD是直角梯形,AB垂直于AD,CD垂直于AD,CD=2AB,E为PC中点,求证:(1)平面PDC垂直于平面PAD(2)BE平行于平面PAD2.在四棱锥P-ABCD中,四边形ABCD为 在四棱锥P-ABCD中 PA垂直于平面ABC AC⊥BC 证BC⊥平面PAC 如图,在四棱锥P-ABCD中,PA垂直于面ABCD,底面ABCD是菱形,AB=2,角BAD=60度.当平面PBC与平面PDC垂直时求PA长 如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面 PAD⊥平面ABCD,PA=PD,E,F分别是...如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面 PAD⊥平面ABCD,PA=PD,E,F分别是PC,BD的中点.证明EF平行于平面PAD 证明AB垂直于 在四棱锥P—ABCD中,若PA垂直平面ABCD,且四边形ABCD是菱形,求证:平面PAC垂直平面PBD 在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD垂直平面ABCD,M为PC中点,求证PA平行平面MDB,PD垂直BC 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA垂直平面ABCD,PA=AD.M为AB的中点.求证:平面PMC⊥平面PCD 如图所示,四棱锥P-ABCD中,AB垂直AD,CD垂直AD,PA垂直底面ABCD如图所示,四棱锥P-ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M为PC中点,在侧面PAD内找一点N,使MN⊥平面PBD 在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥平面ABCD,AB=根号3 在四棱锥P-ABCD中,PA垂直平面ABCD,AB⊥BC,AB⊥AD,且PA且PA=AB=BC=1/2AD=1,求PB与CD所成的角,