已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(3,-1)共线.(1)求椭圆离心率e(2)设M为椭圆上任意一点,且向量OM=λOA+μOB,(λ,μ∈R,注

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:45:10
已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(3,-1)共线.(1)求椭圆离心率e(2)设M为椭圆上任意一点,且向量OM=λOA+μOB,(λ,μ∈R,注
xUN@/c2!A0RR;dhmڍ !<DAmS|a/ܹq$h7]Tƞsw'Foapp,w枅[3~X^O͖{N]"9_4^v^Ely~s{=r%*ܾ[~y~V%ykv1kR۸)3g =8bȃW0:cݓQP3~B&k;LtvIܵOt7 7_+Ra]u U {:|ݵ:ޘ 1'[O c IH 6/Н13?3-C(AXBN]ɕڝ.߫rT^5& @̙,}qÏV1k袄)\Sg~tcZB+VG`>b܋Dq5 dC{,T|ﰀ *q,9v_9W#W~Dl0E yV~p]a.to[ uw*.eoHC@` 3n p F&nD vR٨=HxÎ@I..܈0LBD"8=^]aksǦ*AO7 ̺ ͙A:T^Nb Vݓ%9tk*I~mMGiSN

已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(3,-1)共线.(1)求椭圆离心率e(2)设M为椭圆上任意一点,且向量OM=λOA+μOB,(λ,μ∈R,注
已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(3,-1)共线.
(1)求椭圆离心率e
(2)设M为椭圆上任意一点,且向量OM=λOA+μOB,(λ,μ∈R,注意OA,OB均为向量),证明:λ^2+μ^2为定值.

已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(3,-1)共线.(1)求椭圆离心率e(2)设M为椭圆上任意一点,且向量OM=λOA+μOB,(λ,μ∈R,注
1)
设椭圆方程为x^2/a^2+y^2/b^2=1,
直线AB:y=x-c,
联立消去y可得:
(a^2+b^2)x^2-2a^2cx+a^2c^2-a^2b^2=0,
令A=(x1,y1),B=(x2,y2),
则x1+x2=(2a^2*c)/(a^2+b^2) ,x1*x2=(a^2*c^2-a^2*b^2)/(a^2+b^2),
向量OA+ OB=(x1+x2,y1+y2), 与向量a=(3,-1)共线,
所以3(y1+y2)+(x1+x2)=0,
即3(x1-c+x2-c)+(x1+x2)=0,
4(x1+x2)-6c=0,
化简得:a^2=3b^2.
椭圆过点(√3,-1),所以3/a^2+1/b^2=1,
联立解得:a^2=6,b^2=2.
椭圆方程为x^2/6+y^2/2=1.
2)
椭圆x^2/6+y^2/2=1
即:x^2+3y^2=6 ,①
设向量OM=(x,y),OA=(x1,y1),OB=(x2,y2)
(x,y)=λ(x1,y1)+μ(x2,y2)
即:x=λx1+μx2
y=λy1+μy2
M在椭圆上,把坐标代入椭圆方程①
(λx1+μx2)^2+3(λy1+μy2)^2=6 ,
λ^2(x1^2+3y1^2)+μ^2(x2^2+3y2^2) +2λμ(x1*x2+3y1*y2)=6 ,②
直线过右焦点,直线方程即: y=x-c ,
把直线代入椭圆,直线交椭圆于AB,求交点:
(a^2+b^2)x^2-2a^2cx+a^2*c^2-a^2*b^2=0
因为前面已证a^2=3b^2,所以c^2=a^2-b^2=2b^2,
由韦达定理:
x1+x2=(2a^2*c)/(a^2+b^2)=3/2*c,
x1*x2=(a^2*c^2-a^2*b^2)/(a^2+b^2)=3/8*c^2
∴x1x2+3y1y2=x1x2+3(x1-c)(x2-c)
=4x1*x2-3(x1+x2)c+3c^2
=3/2c^2-9/2c^2+3c^2=0
而A,B在椭圆上:
x1^2+3y1^2=6 ,x2^2+3y2^2=6 全部代入②知:
λ^2+μ^2=1 为定值.

已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F1、F2,且|F1F2|=4,点(2,8根号5/5)在该椭...已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F1、F2,且|F1F2|=4,点(2,8根号5/ 已知椭圆C的中心在坐标原点,焦点在X轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1求:(1)椭圆的...已知椭圆C的中心在坐标原点,焦点在X轴上,椭圆C上的点到焦点距离的最大值为3,最小值为 已知椭圆C的中心在坐标原点,焦点在x轴上,其左右焦点分别为F1,F2,短轴长为2√3,点P在椭圆C已知椭圆C的中心在坐标原点,焦点在x轴上,其左右焦点分别为F1,F2,短轴长为2√3,点P在椭圆C上,且满足三 已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为1 2 ,椭圆C上的点到焦点距离的最大值为3. (Ⅰ)求椭已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为 12,椭圆C上的点到焦点距离的最大 已知椭圆c的中心在坐标原点,焦点在x轴,离心率为1|2,椭圆c上的点到焦点距离最大值为3.椭圆c的标准方程焦点距离的最大值咋用? 已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为1,求椭圆的方程. 已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.求椭圆C的方程 已知椭圆C的中心在坐标原点O,焦点在x轴上,F1,F2分别是椭圆C的左右焦点,M是椭圆短轴的一个端点,过F1的直线L与椭圆交于A,B两点,三角形MF1F2的面积为4,三角形ABF2的周长为8根号2,求椭圆C的方程 已知椭圆C的中心在坐标原点,焦点F1,F2在x轴上,椭圆C的离心率为2分之1,短轴一个端点到右焦点F2的距离为2,求椭圆C方程 已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点的距离的最大值为3最小值为1,求椭圆的方程 已知椭圆c的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点的距离的最大值为3;最小值为1;1,求椭圆的标准方程 已知椭圆C 的中心在坐标原点,焦点在x 轴上,长轴长为2根3,离心率为3分之根3,经过其左焦点F 1的直线1...已知椭圆C 的中心在坐标原点,焦点在x 轴上,长轴长为2根3,离心率为3分之根3,经过其左焦点 已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.求椭圆方程 已知椭圆c的中心在坐标原点,焦点在X轴上,离心率为1/2,椭圆C上的点到焦点距离的最大为3,就椭圆的标准方程 已知椭圆c的中心在坐标原点,焦点在x轴上,椭圆上的点到焦点的距离最大3最小1,求椭 已知中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍的椭圆经过点M=(2.1)求椭圆方程 已知椭圆的中心在坐标原点,焦点在x轴,椭圆焦距为4,且离心率为更号2分之2,求椭圆标准方程 已知椭圆C的对称中心为原点O,焦点在X轴上,离心率1/2为,且点(1.3/2)在该椭圆上.求过椭圆左焦点F的直线L