已知实数x,y满足(x+√x2+2002)(y+√y2+2002)=2002,求x2-3xy-4y2-6x-6y+58的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:35:43
已知实数x,y满足(x+√x2+2002)(y+√y2+2002)=2002,求x2-3xy-4y2-6x-6y+58的值
xN@_Ǯ.P.e7遠Fjx5  U.`[8l!&vf?lg :uvYɘG H*JPӠG, ^T2)nA%PI!%dڭc[7pۖ3HefgxN 5gYz ?'UeВΓ5@\N`()ҳ3i=m͎[[$uAM4P#@oo^'RDzC7יڙ[wgnM~v՟ V:Ro

已知实数x,y满足(x+√x2+2002)(y+√y2+2002)=2002,求x2-3xy-4y2-6x-6y+58的值
已知实数x,y满足(x+√x2+2002)(y+√y2+2002)=2002,求x2-3xy-4y2-6x-6y+58的值

已知实数x,y满足(x+√x2+2002)(y+√y2+2002)=2002,求x2-3xy-4y2-6x-6y+58的值
等于58,楼上初中数学没学吧.

(x+√x2+2002)(y+√y2+2002)=2002
上式可以化为:
(x+|x|+2002)(y+|y|+2002)=2002
(1). x≥0,y≥0, 2x+2002≥2002,2y+2002≥2002,
(x+√x2+2002)(y+√y2+2002)
=(2x+2002)(2y+2002)>2002*2002
>2002,
(...

全部展开

(x+√x2+2002)(y+√y2+2002)=2002
上式可以化为:
(x+|x|+2002)(y+|y|+2002)=2002
(1). x≥0,y≥0, 2x+2002≥2002,2y+2002≥2002,
(x+√x2+2002)(y+√y2+2002)
=(2x+2002)(2y+2002)>2002*2002
>2002,
(2).x≥0, y≤0,
(x+√x2+2002)(y+√y2+2002)
=(2x+2002)(y-y+2002)
=(2x+2002)*2002>2002*2002
>2002
(3) x≤0,y≥0
(x+√x2+2002)(y+√y2+2002)>2002
(4) x≤0,y≤0
(x+√x2+2002)(y+√y2+2002)
=(x-x+2002)(y-y+2002)=2002*2002
>2002
均矛盾,题目有问题。

收起