(数学)化简:[2sin50°+sin80°(1+√3tan10)]/√(1+cos10°)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:41:35
x){
O.{iϴmTgjph6 @Uڏ:f$hņ`N"}_`gC]A)XCBH!"FhR [Trę #`M,LXC4
̠dj`Hj#)m;Mqi0i"k*214&L8ZKZBJA62)xŧpOY!gSm4H Ym~qAb( Y5
(数学)化简:[2sin50°+sin80°(1+√3tan10)]/√(1+cos10°)
(数学)化简:[2sin50°+sin80°(1+√3tan10)]/√(1+cos10°)
(数学)化简:[2sin50°+sin80°(1+√3tan10)]/√(1+cos10°)
[2sin50˚+sin80˚(1+√3tan10˚)]/√(1+cos10°)
[2sin50˚+sin80˚(1+√3tan10˚)]/√(1+cos10°)
=[2sin50˚+cos10˚(1+√3tan10˚)]/√(1+cos10˚)
=[2sin50˚+cos10˚+(√3)sin10˚]/√(1+cos10˚)
=[2sin50˚+(cos60˚cos10˚+sin60˚sin10˚)/cos60˚]/√(1+cos10˚)
=2(sin50˚+cos50˚)/√(1+cos10˚)
=(2√2)(sin50˚cos45˚+cos50˚sin45˚)/√(1+cos10˚)
=(2√2)sin95˚/√(1+cos10˚)
=(2√2)cos5˚/√(1+cos10˚)
=(2√2)cos5˚/√[sin10˚/tan5˚]
=(2√2)cos5˚/√[2sin5˚cos5˚/tan5˚]
=(2√2)cos5˚/√[2(cos5˚)^2]
=(2√2)cos5˚/[√2(cos5˚)]