设随机变量X的分布律P{X=K}=C/K!,K=0,1,2.则X的平方的期望是多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 22:06:34
x){nYz?e{Y-O;ڞh~;:ֻY[Q@PHiLM d<3ٜfd
mo~
jh\mkkl+?]\Y?[YL!P*(``65"(8#d5!6Ԅ;B2mJbĈh4! RfAS,<;P ^
设随机变量X的分布律P{X=K}=C/K!,K=0,1,2.则X的平方的期望是多少?
设随机变量X的分布律P{X=K}=C/K!,K=0,1,2.则X的平方的期望是多少?
设随机变量X的分布律P{X=K}=C/K!,K=0,1,2.则X的平方的期望是多少?
1=Sum(k=0->无穷大)C/k!=C*Sum(k=0->无穷大)[1/k!]=C*e,C = 1/e.
E[x^2]=C*Sum(k=0->无穷大)k^2/k!=C*Sum(k=1->无穷大)k^2/k!=C*Sum(k=1->无穷大)k/(k-1)!=C*Sum(k=1->无穷大)(k-1+1)/(k-1)!
=C*Sum(k=1->无穷大)(k-1)/(k-1)!+ C*Sum(k=1->无穷大)1/(k-1)!
=C*Sum(k=2->无穷大)1/(k-2)!+ C*Sum(k=1->无穷大)1/(k-1)!
=C*(1/e) + C*(1/e)
=2C/e
=2