巳知a>0,b>0.求证:lg*(a+b)/2>=(lga+lgb)/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 07:03:33
巳知a>0,b>0.求证:lg*(a+b)/2>=(lga+lgb)/2
xSnP/m! 7VUrmmD4- JUu1ܹWƏ B ú;sΜ33RE8 J1*U{=INĒ"Fr_$gHG:B#م )uFQ1eZchےBL^J.0`6#o]«>|b;K4y kpǬ*r1u223`~0JDͩśCv2ueycQ=VYc}z?(G@2\V^_.MyS8\>ΈΎHݧE`fdtP(lұ_ÿ_ïet'Pz4VBRv`I"̸ n%5N\S}E[0Ⴀ>G1K, H˿R{|;Uj~>Y-;nTa^1xLU+M<lYgM2?7

巳知a>0,b>0.求证:lg*(a+b)/2>=(lga+lgb)/2
巳知a>0,b>0.求证:lg*(a+b)/2>=(lga+lgb)/2

巳知a>0,b>0.求证:lg*(a+b)/2>=(lga+lgb)/2
均值不等式,(a+b)/2>=根号下ab;两边取对数即可

好证啊!步骤如下:
(a-b)的平方>=0
展开得:a平方-2ab+b平方>=0
两边同时加上4ab,有:
a平方+2ab+b平方>=4ab
两边同时除以4,有:
(a平方+2ab+b平方)/4 >= ab
即:
{(a+b)/2 }的平方 > =ab ,
再由于a,b>0
两边同时取10为底的对数,有:
lg...

全部展开

好证啊!步骤如下:
(a-b)的平方>=0
展开得:a平方-2ab+b平方>=0
两边同时加上4ab,有:
a平方+2ab+b平方>=4ab
两边同时除以4,有:
(a平方+2ab+b平方)/4 >= ab
即:
{(a+b)/2 }的平方 > =ab ,
再由于a,b>0
两边同时取10为底的对数,有:
lg{(a+b)/2 }的平方 > lg(ab) ,
即:
2lg{(a+b)/2} > lg(ab)
由对数性质有:
2lg{(a+b)/2} > lga+lgb
移项,就得到了:
lg(a+b/2) > (lga+lgb)/2
==================================
其实这个题采用的是倒推法。很容易推的,您试试看。。

收起