如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC.若点M是抛物线的对称轴上且在x轴下方的动点,是否存在△MAB为等腰三角形?若存在,求出所有符合条件的点M的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:28:05
如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC.若点M是抛物线的对称轴上且在x轴下方的动点,是否存在△MAB为等腰三角形?若存在,求出所有符合条件的点M的
xTRP3:6$$mBB+1 Ah :\FJ+rS¿`Nwo89{:\!1W {nũ|v'EA1&0zNEIvXf277C>qyպᶿE,sW|: wT$>tĻNmϯn˜\ݣ" bdMg$?A_piW&Պںj@CO7k RG`S{fO?V~|NVs29;* %N>(U^]im\}+$=ylmU]ҒȎ RBA{ށ@02$dLn

如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC.若点M是抛物线的对称轴上且在x轴下方的动点,是否存在△MAB为等腰三角形?若存在,求出所有符合条件的点M的
如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC.
若点M是抛物线的对称轴上且在x轴下方的动点,是否存在△MAB为等腰三角形?若存在,求出所有符合条件的点M的坐标
有三种情况
我已经求出了两种(AB=BM、AM=AB)希望大家能够帮我求出(AM=BM)这第三种情况是M的坐标

如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC.若点M是抛物线的对称轴上且在x轴下方的动点,是否存在△MAB为等腰三角形?若存在,求出所有符合条件的点M的
令x=0 y=4,C点坐标(0,4)
设A(x,0)
BC=√(x²+4²)=√(x²+16) B点坐标(√(x²+16),4)
A、B两点均在抛物线上,纵横坐标满足抛物线方程.
ax²-5ax+4=0
a(x²+16)-5a√(x²+16)+4=4
解得x=-3 a=-1/6
函数方程为y=-x²/6+5x/6+4=(-1/6)(x²-5x-24)=(-1/6)(x-5/2)²+121/24
对称轴x=5/2
点A坐标(-3,0),点B坐标(5,4)
设点M坐标(5/2,y) (y

如图,抛物线y=ax²—8ax+12a(a 如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC.求抛物线解 如图,抛物线y=ax²+c(a 如图,抛物线y=ax^2+bx+c(a 如图,抛物线Y=ax2-2ax-b(a 抛物线y=ax²+bx+c(b>0,c 抛物线C的方程为y=ax²(a 如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,已知BC‖x轴,点A在x轴上,点C在y如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴; 如图,抛物线y=ax*2-4ax+3a(a 已知抛物线y=ax²-2ax-3a(a 如图,抛物线y1=-ax²-ax=1经过点P(-1/2,9/8),且与抛物线y2=ax²-ax-1相交于A,B两点.(1)求如图,抛物线y1=-ax²-ax=1经过点P(-1/2,9/8),且与抛物线y2=ax²-ax-1相交于A,B两点.(1)求a的值(2) 如图,抛物线y1=-ax²-ax=1经过点P(-1/2,9/8),且与抛物线y2=ax²-ax-1相交于A,B两点. (1)求如图,抛物线y1=-ax²-ax=1经过点P(-1/2,9/8),且与抛物线y2=ax²-ax-1相交于A,B两点.(1)求a的值(2 如图,点a在抛物线y=ax²+ax-2上,将点a点b(-1,0)顺时针90°得点c(0,求抛物线的顶点坐标如图,点a在抛物线y=ax²+ax-2上,将点a绕点b(-1,0)顺时针旋转90°得点c(0,2)求抛物线的顶点坐 如图,抛物线Y=AX²-5ax+4经过△ABC的三个顶点,已知BC‖x轴,点A在x轴上,点C在y上,且AC=BC(1)求抛物线的对称轴(2)写出A,B,C三点的坐标并求抛物线的解析式 如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC.求抛物线解求抛物线解析式。 已知抛物线y=ax²-4ax+4a-2 其中a是常数 1求抛物线顶点坐标 如图,二次函数y=ax²+bx+c,经过图像ABC三点.观察图像,写出A.B.C三点坐标,并求出抛物线关系式 若抛物线Y=2x²+4x-5经过抛物线Y=-x²+ax的顶点,则a等于