已知f(x)=ax2+bx+c为实二次函数,f(x)=x无实数根,证明f(f(x))=x也无实数根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:54:19
已知f(x)=ax2+bx+c为实二次函数,f(x)=x无实数根,证明f(f(x))=x也无实数根
xRN@&%/`ҥ!w`4H ZHhh[<iKM\={"B k2ǣeD+vYwE[F&# δ󕢾cVf~ffB*\@jtDڌͲͲ DDq໴cAV} w]j >{oĩ YBZ(GY% Vc&ڠg8X-bM!U /*4U(D{V4?'Nb7.J5%*ex8qډ ]Ant%Lzf/Hc#~y6ktsKͦRQtP^..2ڽ(-DnB=bY^xb'

已知f(x)=ax2+bx+c为实二次函数,f(x)=x无实数根,证明f(f(x))=x也无实数根
已知f(x)=ax2+bx+c为实二次函数,f(x)=x无实数根,证明f(f(x))=x也无实数根

已知f(x)=ax2+bx+c为实二次函数,f(x)=x无实数根,证明f(f(x))=x也无实数根
反证
假设f(f(x))=x有实数根x1,即f(f(x1))=x1.
设f(x1)=x2,
则有f(x2)=x1,两边同用f作用,得
f(f(x2))=f(x1)=x2,即x2也是一个根.
因为f(x)=x无实根,所以x1不等于x2,不妨设x1>x2.
则,函数f(x)过点(x1,x2)和点(x2,x1).
而(x1,x2)在直线y=x的下方,(x2,x1)在直线的上方.
所以f(x)与直线y=x必有交点.即f(x)=x有实数根.
与条件矛盾,所以假设不成立.
f(f(x))=x无实根.

因为 f(x)=x无实数根
则f(x)不等于x
则f(f(x))不等于f(x)不等于x
即证明f(f(x))=x也无实数根