已知f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实数根?用数形结合的方法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:48:05
已知f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实数根?用数形结合的方法
xRN@%L.OL KCE3X &<,Hm3sg/`nfΙ{3RJ +e,PCWS[5d#|7hyǶ<ԃ` Z}ӗyɼ.%n"gRd霩I16EVY$%:-矄4עGlX\EM[&ZC4cҌ]N|&q#-ւ:l=2sLLfO0p  )l`jz ^yl W&F7~IZQ )ۇa0!imTxˎ@|ixU)Wٷ+E`")Z s

已知f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实数根?用数形结合的方法
已知f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实数根?用数形结合的方法

已知f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实数根?用数形结合的方法
无实根
1.当a>0时,f(x)=x没有实数根,数形结合,即y1=ax^2+bx+c 与y2=x,这两个图像无交点,即二次函数图像在y=x直线上方,此时二次函数f(x)的值域是>0的,对于函数f(f(x))来说,令f(x)=t,则其中t>0, f(t)的图像形如f(x)的图像,只留y轴右侧部分,那么此图像仍然在y=x直线上方,无交点,即f(f(x))=x无实数根
2.同理当a