证明函数y=2-x/x-1在区间[2,6]上是减函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:17:14
证明函数y=2-x/x-1在区间[2,6]上是减函数
xTn@~ 8!'ECU^K4 "@"($USB(%`wiwW. Ҫ^|;;aY;9R-A _&te?IY٢Կ?D\H "2$4";C1m̝[vLSv\&_#NQ f`5r,!B&+I5!nO &G1fq*FC0bۤ@'h;{#TKiku nH۟Q}}h/0* k1EavfmUFs'n&GQ{TJevb >!:>tr"a 8 ^NyGox *2a :b>׶w Z,^p.*'vgC:KZ: .j@ hbH@qh.`_P68{ze^" .ܩI)M]| :. Fk1y (q#qnW% d9).HdX» spRT-

证明函数y=2-x/x-1在区间[2,6]上是减函数
证明函数y=2-x/x-1在区间[2,6]上是减函数

证明函数y=2-x/x-1在区间[2,6]上是减函数
证明函数y=(2-x)/(x-1)在区间[2,6]上是减函数.
设a,b(a<b)是区间[2,6]上的任意两个数,则y(a)-y(b)=(2-a)/(a-1)-(2-b)/(b-1)=[(2-a)(b-1)-(a-1)(2-b)]/[(a-1)(b-1)]=[(2b-ab-2+a)-(2a-2-ab+b)]/[(a-1)(b-1)]=[2b-ab-2+a-2a+2+ab-b]/[(a-1)(b-1)]=[b-a]/[(a-1)(b-1)],因为b-a>0,(a-1)(b-1)>0,所以y(a)-y(b)>0.所以函数y=(2-x)/(x-1)在区间[2,6]上是减函数.

y=(-(x-1)+1)/(x-1)=-1+ 1/(x-1)
当x∈[2,6]时,1/(x-1)是减函数,
于是,y=2-x/x-1在区间[2,6]上是减函数。

求个导不就完了
导数是-1/(x-1)^
2-6上恒负呗
如果你没学过导数直接按定义证还是很简单吧
设x1f(x1)-f(x2)是大于零的

令f(x)=y=(2-x)/(x-1)=1/(x-1)-1
用定义证明:
设x1,x2是[2,6]上任意两数,且x1f(x2)。
f(x1)-f(x2)
=1/(x1-1)-1/(x2-1)
=(x2-x1)/[(x1-1)(x2-1)]
x1,x2是[2,6]上任意两数且x10,x2-1>0,x2-...

全部展开

令f(x)=y=(2-x)/(x-1)=1/(x-1)-1
用定义证明:
设x1,x2是[2,6]上任意两数,且x1f(x2)。
f(x1)-f(x2)
=1/(x1-1)-1/(x2-1)
=(x2-x1)/[(x1-1)(x2-1)]
x1,x2是[2,6]上任意两数且x10,x2-1>0,x2-x1>0
所以f(x1)-f(x2)>0
所以f(x1)>f(x2)
由任意性知道y=2-x/x-1在区间[2,6]上是减函数

收起

先对函数求导,然后令导函数小于零,解出的集合就是减区间