一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为?(请画出草图—)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 14:08:29
一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为?(请画出草图—)
xURPR\ Z#!Pb'V`KX/\Vi-$_&j:C&Zg='niRGՃmo`>Ri@ >)g+ŬZk'gx魶[zugXS7u~Trg8SIGs]9FҤN㥺I?f<^@#Kj)]@@S 3pTV l8͏X@t,]9uDo~ŧ'Kם8P%wF =f2aBz -mZ4v fF9Lb9B/t3…\)}׿ծx,?@kwWpsߛAa\;{">Gz{C-1s./SXg}qܜ ͅVV_hx\x埰=aIr~$I"6%Y)v ϑ@4K Nj6Byٝ]vAIEI3sXI`E;8mup!G>Ű"C E a~؃ 

一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为?(请画出草图—)
一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为?(请画出草图—)

一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为?(请画出草图—)
L1:y=kx+b L2:y=kbx
分析k、b的不同取值来看图像形式:
k=0,b≠0;L1与x轴平行,L2与x轴重合;两线平行
k=0,b=0;L1、L2与x轴重合
k≠0,b=0;L1过原点,L2与x轴重合;两线相交与原点
k≠0,b≠0,b=1;L1与y轴截距为b,L2过原点,两线平行
k≠0,b≠0,b≠1;L1与y轴截距为b,L2过原点,两线相交
若还要分析交点所在象限,则还要分析k、b的符号.

根据一次函数的图象分析可得:
由一次函数y=kx+b图象可知k<0,b>0;一次函数y=k的图象可知kb<0,两函数解析式均成立;
由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与次函数y=k的图象可知kb>0矛盾;
由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与次函数y=k的图象可知kb>0矛盾;
由一次函数y=kx+b图象可知k>0,b...

全部展开

根据一次函数的图象分析可得:
由一次函数y=kx+b图象可知k<0,b>0;一次函数y=k的图象可知kb<0,两函数解析式均成立;
由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与次函数y=k的图象可知kb>0矛盾;
由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与次函数y=k的图象可知kb>0矛盾;
由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与次函数y=k的图象可知kb<0矛盾.

收起

我知道画得不好看 但大概就是这样