lim (x→0) [tan( π/4 - x )]^(cotx)=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:49:18
xN@_ecҔ "6!$hxQ/x0!Ƌ1X#p-柿lJX8"}
V-["@ 3$W jG'(RKXj3U,+ JF _>ǖ|9]m{\ 1*p\u*0ras=9țg0y;"M=7C]ŞF0H9y$,!{1Mڬ[
̕- 4頸
lim (x→0) [tan( π/4 - x )]^(cotx)=?
lim (x→0) [tan( π/4 - x )]^(cotx)=?
lim (x→0) [tan( π/4 - x )]^(cotx)=?
lim (x→0) [tan( π/4 - x )]^(cotx)= lim(x→0){e^[cotx*ln(tan(π/4-x))]}
只需要求lim(x→0)[cotx*ln(tan(π/4-x))];
lim(x→0)[cotx*ln(tan(π/4-x))]
=lim(x→0)[ln(tan(π/4-x))/tanx]
=lim(x→0)[(tan(π/4-x)-1)/x] (这步是因为 tanx∽x (x→0);)
(同时因为ln(x+1)∽x (x→0); 所以ln(tan(π/4-x))∽tan(π/4-x)-1 (x→0) )
=lim(x→0){[sin(π/4-x)-cos(π/4-x)]/[xcosn(π/4-x)]} (这步把tan拆分成sin/cos)
=lim(x→0){√2[sin(π/4-x)-cos(π/4-x)]/x} ( 这步是因为cos(π/4-x)=1/√2 (x→0))
=lim(x→0)[2*(-sinx)/x]
((√2/2)sin(π/4-x)-(√2/2)cos(π/4-x)=[sin(π/4-x-π/4)=-sinx)
=-2 (这步是因为 sinx∽x (x→0);)
所以所求极限等于 lim (x→0) [tan( π/4 - x )]^(cotx)= lim(x→0){e^[cotx*ln(tan(π/4-x))]}=e^(-2)
lim (x→0) [tan( π/4 - x )]^(cotx)=?
lim(2-x)tanπ/4x
x→1,求lim(tanπx/4)^tanπx/2求极限,
求极限:lim (x→0) [tan( π/4 - x )]^(cotx)=?
1.计算lim(1/x2-cot2x) X→0 2 lim(1-x)tanπx/2x→1
lim(x→1) (1-x)tan(π/2)x
lim(x→0)tan(x)ln(1+x)=?
lim x→0 (cot x)^tan 2x=
求极限lim┬(x→0)?〖(tan?x
求lim (x→2)(x-2)tanπx/4的值
lim(x→π/4) tan(π/4-x)/cot2x 求极限
高等数学试题1.计算lim(1/x2-cot2x) X→0 2 lim(1-x)tanπx/2x→1
lim x→-2 (tanπx)/(x+2) 2.lim x→0 cot2xcot[(π/2)-x] 3.lim x→π/3 (1-2cosx)/(π-3x)
lim (x->0) [tan(tan x)-sin(sin x)]/(tan x -sin x)
几道极限题!1,lim(x->1)(1-x)tanπ/22,lim(x->0)(tanx-sinx)/x^3
lim(x→0)[tan(2x+x^3)/sin(x-x^2)]
求极限 lim(n→∞) tan^n (π/4 + 2/n) lim(n→∞)tan^n(π/4+2/n) =lim(n→∞)[(tan(π/4)+tan(2/n))/(1-tan(π/4)tan(2/n))]^n =lim(n→∞)[(1+tan(2/n))/(1-tan(2/n))]^n =lim(n→∞)(1+tan(2/n))^n/(1-tan(2/n))^n (1) 因为 lim(n→∞)(1+tan(2/n)
lim(x→0)(e^tan x-e^sin x)/x^3,rt