已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x+1)=f(1-x)且方程f(x)=x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:03:26
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x+1)=f(1-x)且方程f(x)=x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[
xRn@KHUfxh%HՅ.QYFjl)*QHC4E&)Uk'w& ܱS` `{:rodoj fr״889Co( 3kx7wQЎCIhPtԖ+\XӴej^tD9n"иt.ẋAX1 :tIۡBP  C>s_gc_*"W$>vga6C"ChXoEX6T] wZ6OzJPVc_&-jidy34b[351+/eNPo뉱'}a6YyIzVg:){qj$UcjGX0yg׉h̼M&BK9~Ul1f%NFfwpJ`P9+2b=VU*;&Ө

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x+1)=f(1-x)且方程f(x)=x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x+1)=f(1-x)且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,说明理由.

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x+1)=f(1-x)且方程f(x)=x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[
f(1-x)=f(x+1)说明函数的对称轴为x=1,也就是-b/2a=1
b = - 2a
f(x)=2x可化为:
4ax²+2bx-2x=0 ,因为b=-2a
所以
4ax²-4ax-2x=0
2ax²-2ax-x=0 因为方程有重根,
所以a=-1/2,b=1
f(x)= - (1/2)x²+x
f(x)≤ - 3 可化为:
- (1/2)x²+x≤ - 3
x²-2x-6≥0
x≥1+√7,或x≤1-√7 ,给点分吧,我穷呀