正三棱柱ABC~A1B1C1的底面边长为1,点M在BC上,三角形AMC1是以M为直角顶点的等腰三角形 1.求证:点M为BC的中点 2.求点B到平面AMC1的距离 3.求二面角M~AC1-B的平面角的正切值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 04:13:41
正三棱柱ABC~A1B1C1的底面边长为1,点M在BC上,三角形AMC1是以M为直角顶点的等腰三角形 1.求证:点M为BC的中点 2.求点B到平面AMC1的距离 3.求二面角M~AC1-B的平面角的正切值
xVKkQ+($6ǝ̨ tk7nJ Wlj[S ]]$6)y@ Fl/ܙqsg&.ssw8qE_Ƨj(dC|Wxsm4Vۛ;֏^oil^k" o+zs7(s5szxƨNZW5 !\=j&#rZ9譓Ms^oQZKlH”!Rȓ\+{H.z1?Ǚܗz*6 >Ou\KNLL&S&>}Lx}#ܗ8RfRc/e$b.&r0HCxB$I>MCZ@l q . /%b8^%%4y*?2,R.5qOB~Q(&&bC.P.6/G2 ErH =|QX{A܏X4EOP¬(|XsęgH@z՚1Cqu Vn3qgqkUk^ՙn en VeT%sQX 8™j:^i*Cq#LW_fan&3R]%\Q\?MHS(ٲ_# #28gOB$dz{HxHh$d*/_ü*ĵ^){AVb<2WEJkecI7jE'cs[o)~٭\{ބzB[}}P,ٛ461=oUNd}U֛'vKenjPlֶ>zfΖuV< ugwzdCx |*FRn"m?+yo

正三棱柱ABC~A1B1C1的底面边长为1,点M在BC上,三角形AMC1是以M为直角顶点的等腰三角形 1.求证:点M为BC的中点 2.求点B到平面AMC1的距离 3.求二面角M~AC1-B的平面角的正切值
正三棱柱ABC~A1B1C1的底面边长为1,点M在BC上,三角形AMC1是以M为直角顶点的等腰三角形 1.求证:点M为BC的中点 2.求点B到平面AMC1的距离 3.求二面角M~AC1-B的平面角的正切值

正三棱柱ABC~A1B1C1的底面边长为1,点M在BC上,三角形AMC1是以M为直角顶点的等腰三角形 1.求证:点M为BC的中点 2.求点B到平面AMC1的距离 3.求二面角M~AC1-B的平面角的正切值

1、AC1^2=AC^2+CC1^2,
AC1=√[a^2+(a√2/2)^2]=√6a/2,
∵△AMC1是等腰直角△,
MC1=AM=√2/2*AC1=√3a/2,
而边长为a的正三角形其高就是√3a/2,故M是BC的中点。
2、C点至平面AMC1的距离d,可看成是底而AMC1,顶点是C的三棱锥C-AMC1的高,
VC1-AMC=(√3/4)*a...

全部展开

1、AC1^2=AC^2+CC1^2,
AC1=√[a^2+(a√2/2)^2]=√6a/2,
∵△AMC1是等腰直角△,
MC1=AM=√2/2*AC1=√3a/2,
而边长为a的正三角形其高就是√3a/2,故M是BC的中点。
2、C点至平面AMC1的距离d,可看成是底而AMC1,顶点是C的三棱锥C-AMC1的高,
VC1-AMC=(√3/4)*a^2/2*(√2a/2)/3=√6a^3/48,体积是一半正三角形面积乘以棱柱高的1/3,S△ANC1=AM*MC1/2=(3a^2/8)
VC-ABC1=S△ANC1*d/3=a^2/8*d,
a^2/8*d=√6a^3/48
d=√6a/6.
点C到平面AMC1的距离是√6a/6。

收起

缺少高的条件,我增加正三棱柱高=√2a/2的条件。
1、AC1^2=AC^2+CC1^2,
AC1=√[a^2+(a√2/2)^2]=√6a/2,
∵△AMC1是等腰直角△,
MC1=AM=√2/2*AC1=√3a/2,
而边长为a的正三角形其高就是√3a/2,故M是BC的中点。
2、C点至平面AMC1的距离d,可看成是底而AMC1,顶点是C的三棱锥...

全部展开

缺少高的条件,我增加正三棱柱高=√2a/2的条件。
1、AC1^2=AC^2+CC1^2,
AC1=√[a^2+(a√2/2)^2]=√6a/2,
∵△AMC1是等腰直角△,
MC1=AM=√2/2*AC1=√3a/2,
而边长为a的正三角形其高就是√3a/2,故M是BC的中点。
2、C点至平面AMC1的距离d,可看成是底而AMC1,顶点是C的三棱锥C-AMC1的高,
VC1-AMC=(√3/4)*a^2/2*(√2a/2)/3=√6a^3/48,体积是一半正三角形面积乘以棱柱高的1/3,S△ANC1=AM*MC1/2=(3a^2/8)
VC-ABC1=S△ANC1*d/3=a^2/8*d,
a^2/8*d=√6a^3/48
d=√6a/6.
点C到平面AMC1的距离是√6a/6。
如果满意请点击右上角评价点【满意】即可~~
你的采纳是我前进的动力~~
答题不易..祝你开心~(*^__^*) 嘻嘻……

收起

正三棱柱ABC-A1B1C1的体积为12根3,底面边长为4,则直线A1B与底面ABC所成角的正切值 已知正三棱柱ABC-A1B1C1底面边长为10,过底面一边作与底面成60°角的截面,求截面面积. 已知正三棱柱ABC-A1B1C1底面边长为10,过底面一边作与底面成60°角的截面,求截面面积. 已知正三棱柱ABC-A1B1C1的底面边长为2,高为4,过BC作一截面,截面与底面成60度角,求截面面积 如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点 在正三棱柱ABC-A1B1C1中,底面边长为根号2,设AB1与BC1成60度角.求侧棱长.在正三棱柱ABC-A1B1C1中,底面边长为 根号2,设AB1与BC1成60度角.求侧棱长. 正三棱柱ABC-A1B1C1的底面边长与侧棱长都是2,D,E分别是BB1,CC1的中点,求三棱柱ABC-A1B1C1的全面积正三棱柱ABC-A1B1C1的底面边长与侧棱长都是2,D,E分别是BB1,CC1的中点,(1)求三棱柱ABC-A1B1C1的全面积( 在正三棱柱ABC-A1B1C1中,底面边长为2.侧棱长为根号2,D为A1C1的中点,求证:A1C垂直B1D 已知正三棱柱ABC—A1B1C1的底面边长为3,高为4,则异面直线A1B与B1C所成的角的余弦值是 在正三棱柱ABC—A1B1C1中,侧棱长为根号2,底面正三角形的边长为1,求BC1与侧面ACC1A1所成角的大小 正三棱柱ABC-A1B1C1的底面边长为2,高为3,求点C到平面ABC1的距离 正三棱柱ABC-A1B1C1中,底面边长为8,E为AC的中点,BC1=10,求二面角B-AC1-C的大小 已知正三棱柱ABC-A1B1C1的底面边长为4高为3求它的侧面积.全面积.体积 如图,已知正三棱柱ABC-A1B1C1的侧棱长为1,底面边长为根号2,求异面直线AB1与BC1夹角 在正三棱柱ABC-A1B1C1中,底面边长为2,侧棱长为根号3,求BB1与平面AB1C1所成的角?最好有图, 在正三棱柱ABC-A1B1C1中,底面边长为2,侧棱长为根号3,则BB1与平面AB1C1所成的角是多少? 已知正三棱柱ABC-A1B1C1底面三角形边长为4,高为4,求异面直线BC1与AC所成角的大小 如图,在正三棱柱ABC-A1B1C1中,底面边长为1,侧棱长为根号3,求C1点到平面CA1B1的距离