直线y=-4/3x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO’B’,求直线AB上求点P,使得S△AB'O'=S△AB'P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:51:05
直线y=-4/3x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO’B’,求直线AB上求点P,使得S△AB'O'=S△AB'P
xU[OG++6n{z# ԗUkmS넰`04M hD I'B̬%D*TZ $sf\&Y4_bˆdU .]y6VQkoSt{v~k8{LgmmUmncvQ~S&Tp5r]~4GqWZ$qp@޸N%ye(APf|<&L63 =k$n?e>"~+BL86~S@JCqˉ4HS|ZH+Ò.% O$ӡNILFR .Ci@I @X},`: 'dA dC1tN,@p~AmUw՝;sVgF#VVjZ{t 5ֲ6 " :JQE@gw:Wʼ6i5X8/gDdn"pkt`w4X9> -a9f?y,Xash@((]T$ʙ*Y5W"%F4qgjXq Âθ' (?\N2- O}} ;@()^ZAT 9M{{PcA5`{e/oZ 'Jm0YY$" ͻ`nW?\9L`RnCfu1cB -FQ)jUA8"~,@Ak# ʳ/A+|By"{49A;K{ D$MMRQ&cҴ'|OYg }|V:_w_9~!0E 17!RѾ7#ծVvo)y"b= Q'|H|D"_[@=g *|sBz ~>T(FB#\'LCfDqQ%fíGk]Gl=l>ϽJ|DV}m`$'v'Pw;a EuAo9=@#Ig@k'|oi>+d

直线y=-4/3x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO’B’,求直线AB上求点P,使得S△AB'O'=S△AB'P
直线y=-4/3x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO’B’,
求直线AB上求点P,使得S△AB'O'=S△AB'P

直线y=-4/3x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO’B’,求直线AB上求点P,使得S△AB'O'=S△AB'P
当y=0时,0=-4/3x+4
x=3
∴OA=3
根据题意可知,B'O'‖x轴
若S△AB'O'=S△AB'P
作O'P⊥AB于P,作PM⊥x轴于点M
则PM=48/5
∴P点的纵坐标为48/25或-48/25
代入解析式可得P点的坐标为(27/25,48/25)或(123/25,-48/25)

令y=0,x=3 令x=0,y=4 所以,A(3,0) B(0,4)
AB=5
S△AB'O'=S△ABO=1/2 *3*4=6
S△AB'P=1/2 AB' *h=6
AB'=AB=5
h=12/5
h是P到直线AB'的距离
由于旋转之后,AB垂直于AB' 所以,P到AB’的距离,就是PA=h=12/5
P可能在AB上位于x轴上方的...

全部展开

令y=0,x=3 令x=0,y=4 所以,A(3,0) B(0,4)
AB=5
S△AB'O'=S△ABO=1/2 *3*4=6
S△AB'P=1/2 AB' *h=6
AB'=AB=5
h=12/5
h是P到直线AB'的距离
由于旋转之后,AB垂直于AB' 所以,P到AB’的距离,就是PA=h=12/5
P可能在AB上位于x轴上方的部分,也可能在AB上位于x轴下方的部分,
过P作x轴垂线交x轴于C
△ABO∽△APC AB/AP=AO/AC 所以,AC=36/25
C(3-36/25,0) 或(3+36/25,0)
即C(39/25,0) 或(111/25,0)
P与C横坐标相同,所以,代入直线方程得
P(39/25,48/25)或(111/25,-48/25)
不懂可以问我。

收起

因为,直线在x、y轴上的截距是3和4,
原面积=3*4=12,
AB'=根(3²+4²)=5
又,AB'垂直于直线L,
所以,只在直线上找到与X轴截点上下方2.4的点坐标即可。
直线与截点的坐标C(3,0),P(x,y),
可得:(x-3)²+y²=2.4²
...

全部展开

因为,直线在x、y轴上的截距是3和4,
原面积=3*4=12,
AB'=根(3²+4²)=5
又,AB'垂直于直线L,
所以,只在直线上找到与X轴截点上下方2.4的点坐标即可。
直线与截点的坐标C(3,0),P(x,y),
可得:(x-3)²+y²=2.4²
y=-4/3x+4
解得 x=3±36/25,y=-48/25,或48/25
x=3+36/25
y=-48/25
或者 x=3-36/25
y=48/25
P点坐标是(4.44,-1.92) 或 (1.56,1.92)

收起

令y=0,x=3 令x=0,y=4 所以,A(3,0) B(0,4)
AB=5
S△AB'O'=S△ABO=1/2 *3*4=6
S△AB'P=1/2 AB' *h=6
AB'=AB=5
h=12/5
h是P到直线AB'的距离
由于旋转之后,AB垂直于AB' 所以,P到AB’的距离,就是PA=h=12/5
P可能在AB上位于x轴上方的...

全部展开

令y=0,x=3 令x=0,y=4 所以,A(3,0) B(0,4)
AB=5
S△AB'O'=S△ABO=1/2 *3*4=6
S△AB'P=1/2 AB' *h=6
AB'=AB=5
h=12/5
h是P到直线AB'的距离
由于旋转之后,AB垂直于AB' 所以,P到AB’的距离,就是PA=h=12/5
P可能在AB上位于x轴上方的部分,也可能在AB上位于x轴下方的部分,
过P作x轴垂线交x轴于C
△ABO∽△APC AB/AP=AO/AC 所以,AC=36/25
C(3-36/25,0) 或(3+36/25,0)
即C(39/25,0) 或(111/25,0)
P与C横坐标相同,所以,代入直线方程得
P(39/25,48/25)或(111/25,-48/25)

收起