如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 15:44:14
如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将
xZ]OY+\M>n!M&z ]Q Vj֠6 O/ l)syyNd!;FTN[,2'g1~gEX^dD/r],#uh[ M )Hׂ8+ 3eeGg~q)uL} 0躨DmX: 춋J싰,/3K,,岴uXD슺q$gr\:J9zI7/N}5DI]mޓ39y @XH7/x}6WEEe[Up)qj^axҼ⢀n@ ~!2!q(S"E ]H:p㧠E5|l^g>Vx6~mF.m ÈaUw)JQ]X]֣[x'83Wͥ5h%p.D- U|GM]@M]pf"qx8{-_bP>J\z'Go/M}-H@* VP7P6 i'֣腖\DjPBYa5JMfŶ,_xLIٖM8Lc=VMs6ĉGlL1E(?)!>H)僒X]Fqh8@ A[q!X|Ju?u)Bt@0)j %r %Xx@hF@ P|qM-%KBwRF"PB [ @@xMB/SO4?;W_}}?G?!߳<ӱj?!GBP82;oe maYwbeVzyhU ]Ee*znaJ[L½a LZMMM`A}R!Ls % ŭU4X+6FKKP2S{nApr|u삗 fzia_ ~ќpo= 6!ϸ iLlL)40LӚƴ]Oxg܆8$!!~h[]=/i#Q{?pФK[tKF++yXV{妌7 ̠cFZ5)>:c"YDS4u}"BB- FZcY3k4[8i%7zWi^

如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将
如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)
《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分?并说明理由;
《二》点N从点B以每秒2个单位长的速度沿着BC边向点C移动(于点M的出发时刻相同),在什么时刻,梯形ABNM的面积最大?并求出面积的最大值;
《三》点N从点B以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动(与点M的出发时刻相同),过点M作MP平行雨AB,交BC于点P,当△MPN全等于△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,并求当S=9√3时,a的值.
图在这里

如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将
(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+(10-a)]×菱形高÷2
当梯形AMNB的面积=梯形MNCD的面积时,
即t+a=10,(0≤t≤10),(0≤a≤10)
所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.
(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,
因为AB=10,∠BAD=60°,所以菱形高=5√3,
AM=1×t=t,BN=2×t=2t.
所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5√3×1/2 =(15√3/2) t(0≤t≤5).
所以当t=5时,梯形ABNM的面积最大,其数值为75√3/2.
(3)当△MPN≌△ABC时,
则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25√3;
因为要全等必有MN∥AC,
∴N在C点外,所以不重合处面积为 (√3/4)×(at-10)^2
∴重合处为S=25√3 -(√3/4)×(at-10)^2,
当S=0时即MN在CD上所以a=2.
S=9√3时,9√3=25√3 -(√3/4)×(2t-10)^2
t=9

图在何处

1.是,当m在AD的中点时,n也在BC的中点时就可以了

一,一定的,n为bc上任一点,设cn=2,m是移动的,当t=2时,am=cn,因为是菱形有对称性,可以推出此时被分割成等面积的两部分
二,随着m、n的不断移动可以看出abnm的面积不断增大,当n和c重合时面积最大,此时t=5,m在ad的中点,故abnm的面积为菱形的3/4,很容易可得出菱形面积为50√3,
三,三角形mpn和abc全等,只有一种情况,既当mn平行ac,很容易推出cn...

全部展开

一,一定的,n为bc上任一点,设cn=2,m是移动的,当t=2时,am=cn,因为是菱形有对称性,可以推出此时被分割成等面积的两部分
二,随着m、n的不断移动可以看出abnm的面积不断增大,当n和c重合时面积最大,此时t=5,m在ad的中点,故abnm的面积为菱形的3/4,很容易可得出菱形面积为50√3,
三,三角形mpn和abc全等,只有一种情况,既当mn平行ac,很容易推出cn=am=t,pm=ab=10,由三角形pmn与cdn相似得cd=cn=t,过e(mn与cd的交点)作ei⊥ab,交ab于点i,交mp与j,ej=ei-ij=5√3-t√3,S cdmp=(mp+cd)*ej/2=(10+t)(5√3-t√3)/2

收起

(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+...

全部展开

(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+(10-a)]×菱形高÷2
当梯形AMNB的面积=梯形MNCD的面积时,
即t+a=10,(0≤t≤10),(0≤a≤10)
所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.
(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,
因为AB=10,∠BAD=60°,所以菱形高=5√3,
AM=1×t=t,BN=2×t=2t.
所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5√3×1/2 =(15√3/2) t(0≤t≤5).
所以当t=5时,梯形ABNM的面积最大,其数值为75√3/2.
(3)当△MPN≌△ABC时,
则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25√3;
因为要全等必有MN∥AC,
∴N在C点外,所以不重合处面积为 (√3/4)×(at-10)^2
∴重合处为S=25√3 -(√3/4)×(at-10)^2,
当S=0时即MN在CD上所以a=2.
S=9√3时,9√3=25√3 -(√3/4)×(2t-10)^2
t=9

收起

(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+...

全部展开

(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+(10-a)]×菱形高÷2
当梯形AMNB的面积=梯形MNCD的面积时,
即t+a=10,(0≤t≤10),(0≤a≤10)
所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.
(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,
因为AB=10,∠BAD=60°,所以菱形高=5 ,
AM=1×t=t,BN=2×t=2t.
所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5 × = t(0≤t≤5).
所以当t=5时,梯形ABNM的面积最大,其数值为 .
(3)当△MPN≌△ABC时,
则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25 ;
因为要全等必有MN∥AC,
∴N在C点外,所以不重合处面积为 ×(at-10)2×
∴重合处为S=25 - ,
当S=0时即MN在CD上所以a=2.

收起

(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+...

全部展开

(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+(10-a)]×菱形高÷2
当梯形AMNB的面积=梯形MNCD的面积时,
即t+a=10,(0≤t≤10),(0≤a≤10)
所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.
(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,
因为AB=10,∠BAD=60°,所以菱形高=5 ,
AM=1×t=t,BN=2×t=2t.
所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5 × = t(0≤t≤5).
所以当t=5时,梯形ABNM的面积最大,其数值为 .
(3)当△MPN≌△ABC时,
则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25 ;
因为要全等必有MN∥AC,
∴N在C点外,所以不重合处面积为 ×(at-10)2×
∴重合处为S=25 - ,
当S=0时即MN在CD上所以a=2.

收起

(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1*t=t(0≤t≤10),MD=10-t(0≤t≤10)
所以,梯形AMNB的面积=1/2(AM+BN)*菱形高=1/2(t+a)*菱形高;梯形MNCD的面积=1/2(MD+NC)*菱形高=1/2((10-t)+...

全部展开

(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1*t=t(0≤t≤10),MD=10-t(0≤t≤10)
所以,梯形AMNB的面积=1/2(AM+BN)*菱形高=1/2(t+a)*菱形高;梯形MNCD的面积=1/2(MD+NC)*菱形高=1/2((10-t)+(10-a))
当梯形AMNB的面积=梯形MNCD的面积时,即t+a=10,(0≤t≤10),(0≤a≤10)
所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分
(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5
因为AB=10,∠BAD=60°,所以菱形高=5倍根号3
AM=1*t=t,BN=2*t=2t
所以梯形ABNM的面积=1/2(AM+BN)*菱形高=(2/15倍根号3)t(0≤t≤5)
所以当t=5时,梯形ABNM的面积最大,其数值为2/75倍根号3

收起

如图,在菱形ABCD中,∠A与∠B的度数之比为1:2,AB=10厘米.求:(1)两条对角线的长度(2)菱形的面积 如图:在菱形ABCD中,AB=AC=5cm,求∠BCD的度数和菱形ABCD的面积我在线等啊,亲·~ 如图,菱形ABCD的高DE是5cm.∠A:∠B=1:5,求∠A的度数及菱形ABCD的面积.很急啊!1.如图,菱形ABCD的高DE是5cm.∠A:∠B=1:5,求∠A的度数及菱形ABCD的面积2.在菱形ABCD中,E、F、G、H分别是AB、BC、CD、DA的 如图,在菱形ABCD中,AB=a,∠ABC=α,将菱形ABCD绕点B顺时针旋转(旋转角<90°),点A,C,D分别落在A',如图,在菱形ABCD中,AB=a,∠ABC=α,将菱形ABCD绕点B顺时针旋转(旋转角<90°),点A,C,D分别落在A',B' 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°,若PA=AB,求二面角A-PD-B的余弦值. 已知如图,在菱形ABCD中,初二数学,急急急!已知:如图,在菱形ABCD中,AB=2cm,∠B=45°,AE垂直BC于点E。将△ABC沿着AE所在直线翻折,使点B落在BC的延长线上点B'处求:△AB'E与四边形ABCD重叠 如图,在菱形ABCD中,AE=EF=AF=AB,求菱形各内角的度数. 如图 在菱形ABCD中,AB=13cm,BD=24cm,求这个菱形的面积 如图,在四边形ABCD中,AB//CD,AB=CD=BC,四边形ABCD是菱形吗 如图 在菱形ABCD中作一个等边三角形AEF 且AE=AB 已知:如图,在菱形ABCD中,P是AB上一点,联接EB,求证:∠APD=∠EBC 如图,在菱形ABCD中,AB=6,∠BCD=120°,则对角线AC=() 如图,在四边形abcd中,ab=cd,cb=cd,ab‖cd.求证:四边形abcd是菱形就是普通的菱形 如图,在菱形abcd中,∠adc=120°,ab=10.(1)求bd的长(2)求菱形的面积 如图,在菱形ABCD中,已知∠ADC=120°,AC=12*根号3厘米.求BD的长,求菱形ABCD的面积.例如:AB=CD(菱形的四边相等) 如图,在菱形ABCD中 如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=4 求:(1)∠ABC的度数 (2)菱形ABCD的面积 如图,在菱形ABCD中,E为AB的中点,且DE⊥AB,AB=a.1)∠ABC的度数(2)对角线AC长(3)菱形ABCD的面积