已知sin2α=1/3,则cos²(α-π/4)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:37:35
xQJ@ I
VL#b!$KVbZu'Pv_p6R
왙3ghf>va#z*)favF]\Z{No)鄮m)Ǔ?I<ͭEEPbu{vk4h¬a<0RLdhg$&Q"9_hJ* Q
P HY
Gh,@XY *fvƣܸ\0A z cT!YG%PAp^G¾^٢7tH4E>Dn\8$C*RSKݯigʲn}52/Jgmȡ>${uH߰W>f_e8
已知sin2α=1/3,则cos²(α-π/4)=
已知sin2α=1/3,则cos²(α-π/4)=
已知sin2α=1/3,则cos²(α-π/4)=
cos²(α-π/4)
=1/2*[1+cos(2α-π/2)].利用余弦二倍角公式cos2a=2cos²a-1
=1/2*(1+sin2α)
=1/2*(1+1/3)
=1/2*4/3
=2/3
cos(2α-π/2)=2(cos(α-π/4))^2-1
cos(2α-π/2)=sin(2α)
又因为sin(2α)=1/3<1/2 则α∈(2kπ,2kπ+π/12)∪(2kπ+5π/12,2kπ+π/2)(k∈自然数)
所以(cos(α-π/4))^2= 2/3
cos^2(a-x/4)=1/2*cos(2a+x/2)+1/2=一,一目了然,,,大神能弱弱的问一下,派怎么打嘛