设二次函数f(x)=x^2+bx+c(b,c∈R),已知不论α,β为何实数,恒有f(sinα)≥0和f(2+cosβ)≤0求证:b+c=-1;求证:c≥3;若函数f(sinα)的最大值为8,求b,c的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 19:35:57
设二次函数f(x)=x^2+bx+c(b,c∈R),已知不论α,β为何实数,恒有f(sinα)≥0和f(2+cosβ)≤0求证:b+c=-1;求证:c≥3;若函数f(sinα)的最大值为8,求b,c的值.
xSnQ}Y ?wfcҙyFM%Pl -Z%FU+2Pyz;U_o201qE;9JZs;Wt\dagʪTC)4"z()ÁhSv8PkLUeI!<ޜׅvџdZ r[jl,: w"N;1Lwq @LI>- o5_~Dgҏ6E ?.U_PQQz}v? %"y./&s`ϋ8* "TRJiNgZ-j P)"+·[mP0T(w PHHX%@'YD6':}#kd{*hlor@]lNʱXl]{}v;~'rtrSD9 *<_ / ̬#Fv ze:^ &(. H*5"ZB 䰶@4Nj1ku w<|97^P=֡;ӦNT

设二次函数f(x)=x^2+bx+c(b,c∈R),已知不论α,β为何实数,恒有f(sinα)≥0和f(2+cosβ)≤0求证:b+c=-1;求证:c≥3;若函数f(sinα)的最大值为8,求b,c的值.
设二次函数f(x)=x^2+bx+c(b,c∈R),已知不论α,β为何实数,恒有f(sinα)≥0和f(2+cosβ)≤0
求证:b+c=-1;
求证:c≥3;
若函数f(sinα)的最大值为8,求b,c的值.

设二次函数f(x)=x^2+bx+c(b,c∈R),已知不论α,β为何实数,恒有f(sinα)≥0和f(2+cosβ)≤0求证:b+c=-1;求证:c≥3;若函数f(sinα)的最大值为8,求b,c的值.
1.
-1

1.
-1<=sinα<=1
也就是说 x∈[-1,1]时 f(x)>=0
-1<=cosβ<=1
1<=2+cosβ<=3
也就是说 x∈[1,3]时 f(x)<=0
要使这两个不等式同时成立,必有 x=1时,f(x)=0
即f(1)=1+b+c=0 从而有: b+c=-1
2.
我们知道f(x)是开口向上的
已经...

全部展开

1.
-1<=sinα<=1
也就是说 x∈[-1,1]时 f(x)>=0
-1<=cosβ<=1
1<=2+cosβ<=3
也就是说 x∈[1,3]时 f(x)<=0
要使这两个不等式同时成立,必有 x=1时,f(x)=0
即f(1)=1+b+c=0 从而有: b+c=-1
2.
我们知道f(x)是开口向上的
已经知道它的一个根是 x1=1 ,即 f(x1)=0
x∈[-1,1]时 f(x)>=0 ,x2不会小于1
而x∈[1,3]时 f(x)<=0,所以 另一个根必有 x2>=3。
假设 1而 f(3)>f(x2)=0,矛盾,所以 x2>=3
这样c=x1*x2>=1×3=3
即 c>=3
希望对你能有所帮助。

收起