(已知二次函数f(x)=ax2+bx+c.)已知二次函数f(x)=ax2+bx+c (1)若a>b>c,且f(1)=0,证明f(x)有两个零点; (2)若x1,x2∈R,x1<x2,f(x1)≠f(x2),证明方程f(x)− 1/2[f(x1)+f(x2)]=0在区间(x1,x2)内

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 22:22:19
(已知二次函数f(x)=ax2+bx+c.)已知二次函数f(x)=ax2+bx+c      (1)若a>b>c,且f(1)=0,证明f(x)有两个零点;       (2)若x1,x2∈R,x1<x2,f(x1)≠f(x2),证明方程f(x)− 1/2[f(x1)+f(x2)]=0在区间(x1,x2)内
xSJ@}:4APhCx+bWZVMiUͺ[]mK DIzWp~Ғhu4ofΜ|Q i+wVI^#;qMj8jgG@ƑVX[Je<9:elXI0f553PCih@ʇ<4n90$)dy\9F")4"bWk}2\ܓc׭ҍ"Ws`TCxsz@p(xe l*X+'&;+ƒZ_9FlX"n_ ^̃d85T#\,d=<8

(已知二次函数f(x)=ax2+bx+c.)已知二次函数f(x)=ax2+bx+c (1)若a>b>c,且f(1)=0,证明f(x)有两个零点; (2)若x1,x2∈R,x1<x2,f(x1)≠f(x2),证明方程f(x)− 1/2[f(x1)+f(x2)]=0在区间(x1,x2)内
(已知二次函数f(x)=ax2+bx+c.)
已知二次函数f(x)=ax2+bx+c      (1)若a>b>c,且f(1)=0,证明f(x)有两个零点;       (2)若x1,x2∈R,x1<x2,f(x1)≠f(x2),证明方程f(x)− 1/2[f(x1)+f(x2)]=0在区间(x1,x2)内有一个实根.
 
 
设g(x)=f(x)−1/2[f(x1)+f(x2],
则g(x1)=f(x1)−1/2[f(x1)+f(x2)]=1/2[f(x1)−f(x2)]      这步没看懂.

第一小问我会的,求解第二问.

(已知二次函数f(x)=ax2+bx+c.)已知二次函数f(x)=ax2+bx+c (1)若a>b>c,且f(1)=0,证明f(x)有两个零点; (2)若x1,x2∈R,x1<x2,f(x1)≠f(x2),证明方程f(x)− 1/2[f(x1)+f(x2)]=0在区间(x1,x2)内
设 g(x)=f(x)−1/2[f(x1)+f(x2)]
则 g(x1)=f(x1)-1/2[f(x1)+f(x2)]
=f(x1)-1/2f(x1)-1/2f(x2)
=1/2[f(x1)−f(x2)]
g(x2)=f(x2)-1/2[f(x1)+f(x2)]
=f(x2)-1/2f(x1)-1/2f(x2)
=1/2[f(x2)−f(x1)]
故 g(x1)×g(x2)=﹣1/4[f(x1)-f(x2)]^2
由 f(x1)≠f(x2)
故 [f(x1)-f(x2)]^2>0
故 g(x1)g(x2)<0
即 方程f(x)− 1/2[f(x1)+f(x2)]=0在区间(x1,x2)内有一个实根.