函数y=√(-x^2-2x+8)的单调递减区间是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:35:04
函数y=√(-x^2-2x+8)的单调递减区间是
xRN@mI1VQ H0 @-Bvr\Hj=y3ffՄ3oOjs \_/"8Գ_S ]_ekn : 2дՄ?_AjƬknHJ#K|x "/5 ុhY9JH'hǃ"r3N^FצS4mRj2qz`t-bA 1H9dAUY:Hy97°έ&MܣIJp3 &NޢaP:AZy66oE4ȝ+MY X NtW?#y8 \},E]Q)1# }E

函数y=√(-x^2-2x+8)的单调递减区间是
函数y=√(-x^2-2x+8)的单调递减区间是

函数y=√(-x^2-2x+8)的单调递减区间是
先看定义域
-x^2-2x+8=-(x+1)^2+9≥0
所以-4≤x≤2
要求y=√(-x^2-2x+8)的单调递减区间
即求-x^2-2x+8的减区间
-x^2-2x+8=-(x+1)^2+9
图象关于x=-1对称
在[-4,-1]为增 在[-1,2]为减
所以y=√(-x^2-2x+8)的单调递减区间的减去件是[-1,2]

定义域
-x^2-2x+8>=0
x^2+2x-8<=0
(x+4)(x-2)<=0
-4<=x<=2
-x^2-2x+8=-(x+1)^2+9
所以x>-1时,-x^2-2x+8单调递减
所以y的单调递减区间是(-1,2)

这个是复合函数..基础是y=x的二分之一次方.和二次函数的.复合.
只要是掌握同增异减的性质.