高二数学求和1^2-2^2+3^2-4^2+……+(2n-1)^2-(2n)^2 an=(-1)^(n-1)*n^2 通项式我写出来了,可后面不知道怎么做了.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 23:43:23
高二数学求和1^2-2^2+3^2-4^2+……+(2n-1)^2-(2n)^2 an=(-1)^(n-1)*n^2 通项式我写出来了,可后面不知道怎么做了.
xRAN@ )0LQ&^AFPB4RCfv3q &MZRJ^yؔ31Kq4CrPP"`@ɔ$^/y^%Y[ԞD=!kyz~M<&{|D-ߙѫP)Y'*) t54*kD @Cu4ҁfs&vՄ KlFIxUwI'" 7% RG&p1 +e9,&

高二数学求和1^2-2^2+3^2-4^2+……+(2n-1)^2-(2n)^2 an=(-1)^(n-1)*n^2 通项式我写出来了,可后面不知道怎么做了.
高二数学求和
1^2-2^2+3^2-4^2+……+(2n-1)^2-(2n)^2
an=(-1)^(n-1)*n^2 通项式我写出来了,可后面不知道怎么做了.

高二数学求和1^2-2^2+3^2-4^2+……+(2n-1)^2-(2n)^2 an=(-1)^(n-1)*n^2 通项式我写出来了,可后面不知道怎么做了.
设第n项为r(n)
原式=∑(-1)^(n-1)*n^2
=∑(-1)^(n-1)*(r^2-(2n+1-r)^2)(r从1到n)
化简得:
原式=∑(-1)^(n-1)*(2(2n+1)r-(2n+1)^2)
=2(2n+1)(1-2+3-4……-n)(n为偶数时,括号中后一项消掉)
=-n(2n+1)
或 =2(2n+1)(1-2+3……+n)-(2n+1)^2(n为奇数)
=-n(2n+1)
综上:
原式=-n(2n+1)