判断函数的奇偶性f(x)=|x+1|-|x-1|;f(x)=|x+1|-|x-1|;函数的定义域x∈(-∞,+∞),对称于原点.∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)=|x+1|-|x-1|是奇函数.其中∵f(-x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 14:37:46
判断函数的奇偶性f(x)=|x+1|-|x-1|;f(x)=|x+1|-|x-1|;函数的定义域x∈(-∞,+∞),对称于原点.∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)=|x+1|-|x-1|是奇函数.其中∵f(-x)
xn@@e B cڋ>@VM'n(QTǑP_ή9 BTRUoXwg͛5`>L^ XxEʜEڮNRסw}y'mgޥ3vj1D9.t٘,ݪԤ&'UI:5e<(خ5c7ۨH5ynֳ(i:Wg+B D=y<']~P ^T_ 'x);C/. W'tyR ї8y<r[{ּq&O24kEy3~ 3-yY؂ ߉L3"8k9n{o$. :Aȼa]d@"/8EBФ֪WVͺ![+p8lû7\R%1![,q VIş

判断函数的奇偶性f(x)=|x+1|-|x-1|;f(x)=|x+1|-|x-1|;函数的定义域x∈(-∞,+∞),对称于原点.∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)=|x+1|-|x-1|是奇函数.其中∵f(-x)
判断函数的奇偶性f(x)=|x+1|-|x-1|;
f(x)=|x+1|-|x-1|;
函数的定义域x∈(-∞,+∞),对称于原点.
∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),
∴f(x)=|x+1|-|x-1|是奇函数.
其中∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|这一步为什么?

判断函数的奇偶性f(x)=|x+1|-|x-1|;f(x)=|x+1|-|x-1|;函数的定义域x∈(-∞,+∞),对称于原点.∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)=|x+1|-|x-1|是奇函数.其中∵f(-x)
这是最基本的绝对值的性质啊
|-x+1|=|-(x-1)|=|x-1|
|-x-1|=|-(x+1)=|x+1|
如果两个数互为相反数,那么它们的绝对值相等
我想可能真正把你弄糊涂的,是答案的思路吧

如果在函数定义域内有任意一个x值 都能使得 f(-x)=-f(x) 则该函数为奇函数
这一步是判断奇函数的步骤

|-x+1|=|-(1-x) | =|x-1|
|-x-1|=|-(x+1)|=|x+1|
原理是数与其相反数的绝对值是相等的