设Sn为数列{an}的前n项和,Sn=kn^2+n,n属于N*,其中k是常数若{an}为等差数列求r值2.若r=0且a2m,a4m,a8m(m属于N*)成等比数列,求k值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:07:49
设Sn为数列{an}的前n项和,Sn=kn^2+n,n属于N*,其中k是常数若{an}为等差数列求r值2.若r=0且a2m,a4m,a8m(m属于N*)成等比数列,求k值
xTJ@~T7θ-dtaJR A]LgKYvAkj}f&վg2qk/ L|j9e_$5llxi.q1m|8c0O\0`q%9 ũ%+ME&#uaUȯE_T;ji=|y*jT;1뉨 FQO6xE(bx[dڀ-Gq+'Z5E;.æP*(Z!=$sLiɽЏPX@hF=(bDYF2< Tm?uf[PV#xTOQu8#{Idm\tud[WͯGeH(ڼ#+nk*?8OA@V4 `*[=yTE1h<߯ ЉWކ^LcfI0xqs 3

设Sn为数列{an}的前n项和,Sn=kn^2+n,n属于N*,其中k是常数若{an}为等差数列求r值2.若r=0且a2m,a4m,a8m(m属于N*)成等比数列,求k值
设Sn为数列{an}的前n项和,Sn=kn^2+n,n属于N*,其中k是常数若{an}为等差数列求r值
2.若r=0且a2m,a4m,a8m(m属于N*)成等比数列,求k值

设Sn为数列{an}的前n项和,Sn=kn^2+n,n属于N*,其中k是常数若{an}为等差数列求r值2.若r=0且a2m,a4m,a8m(m属于N*)成等比数列,求k值
等差数列求和通式为:Sn=n[a1+a1+(n-1)]/2=n(a1-1/2)+n^2/2
与Sn=kn^2+n比较,可知:k=1/2,a1-1/2=k =>a1=1
设公差为d,an=1+(n-1)d
a2m/a4m=a4m/a8m => a4 * a4 = a2 * a8a2=1+da4=1+3d
a8=1+7d
所以:(1+3d)(1+3d)=(1+d)(1+7d)
1+6d+9d^2=1+8d+7d^2
2d^2=2d => d=1 或 d=0,所以an是自然数数列或全1数列.

等差数列求和通式为: Sn=n[a1+a1+(n-1)]/2=n(a1-1/2)+n^2/2
与Sn=kn^2+n比较,可知:k=1/2, a1-1/2=k =>a1=1
设公差为d, an=1+(n-1)d
a2m/a4m=a4m/a8m => a4 * a4 = a2 * a8
a2=1+d
a4=1+3d
a8=1+7d
所...

全部展开

等差数列求和通式为: Sn=n[a1+a1+(n-1)]/2=n(a1-1/2)+n^2/2
与Sn=kn^2+n比较,可知:k=1/2, a1-1/2=k =>a1=1
设公差为d, an=1+(n-1)d
a2m/a4m=a4m/a8m => a4 * a4 = a2 * a8
a2=1+d
a4=1+3d
a8=1+7d
所以: (1+3d)(1+3d)=(1+d)(1+7d)
1+6d+9d^2=1+8d+7d^2
2d^2=2d => d=1 或 d=0, 即an是自然数数列或全1数列。
======================
题中没看到有r这个变量

收起