圆x^2+y^2+x-6y+3=0上两点P、Q关于直线kx-y+4=0对称,则k=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:39:51
圆x^2+y^2+x-6y+3=0上两点P、Q关于直线kx-y+4=0对称,则k=?
圆x^2+y^2+x-6y+3=0上两点P、Q关于直线kx-y+4=0对称,则k=?
圆x^2+y^2+x-6y+3=0上两点P、Q关于直线kx-y+4=0对称,则k=?
曲线x^2+y^2+x-6y+3=0为圆,标准方程为:(x+1/2)^2+(y-3)^2=25/4
圆心为(-1/2,3),半径为5/2
又直线kx-y+4=0过点(0,4),则这点到点P和点Q的距离相等;
另外,圆心到点P与点Q的距离也相等,所以点(0,4)与圆心的连线是PQ的垂直平分线,斜率为2,就是直线kx-y+4=0,
则k=2
2表示平方,√表示根号
首先化曲线方程为:
(x+1/2)^2 + (y-3)^2 = (5/2)^2
这是一个圆
那么PQ在圆上,PQ关于直线对称,那么此直线就是线段PQ的垂直平分线,直线必过圆心(-1/2, 3)
圆心在直线上代入得 -k/2 - 3 + 4 = 0
k=2
直线为2x-y+4=0 (1)
由于POQ为直角三角形,...
全部展开
2表示平方,√表示根号
首先化曲线方程为:
(x+1/2)^2 + (y-3)^2 = (5/2)^2
这是一个圆
那么PQ在圆上,PQ关于直线对称,那么此直线就是线段PQ的垂直平分线,直线必过圆心(-1/2, 3)
圆心在直线上代入得 -k/2 - 3 + 4 = 0
k=2
直线为2x-y+4=0 (1)
由于POQ为直角三角形,又OP=OQ=5/2为半径,故为等腰直角三角形。
假设PQ的中点为M(x,y)
应该有|OM|=5*根号2 /4
|OM|^2=(x+1/2)^2 + (y-3)^2 = 25/8 (2)
联立:(1),(2)
求得M为( -1/2 +(√10)/4 , 3+(√10)/2 )
或 (-1/2 - (√10)/4, 3-(√10)/2 )
PQ垂直于直线,故斜率为-1/2
PQ过M,
可以写出PQ的方程:
8y+4x-22-5√10 = 0
或8y+4x-22+5√10 = 0
收起