函数y=acosx+b最大值为1,最小值为-3,求f(x)=bsin(ax+π/3)的单调区间和最值
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 12:56:31
xj@_eJDJ/IC(=$B)XxM
ڀJRJ$X }_"+tg@`7AmvUU[c6pL(U̫F应MnnZxBSwbYSH.煖M!/]2bQION_Iuo -7`MtP)`f]] Mr TPSPa3Ъ"Yux^ƶZvv|ziՆ9Nձ^7sK}YXP&">\0?>awD.>I )K}/SՖqA)aBu |CT.Dz"JY/i{Mk
函数y=acosx+b最大值为1,最小值为-3,求f(x)=bsin(ax+π/3)的单调区间和最值
函数y=acosx+b最大值为1,最小值为-3,求f(x)=bsin(ax+π/3)的单调区间和最值
函数y=acosx+b最大值为1,最小值为-3,求f(x)=bsin(ax+π/3)的单调区间和最值
cosx的取值范围为[-1,1] cosx的最大值为1 最小值为-1
令a>0 则 y的最大值为1 最小值为-3 所以 a+b=1 -a+b=-3 得a=2 b=-1
令a<0 则 y的最大值为1 最小值为-3 所以 -a+b=1 a+b=-3 得a=-2 b=-1
b=-1 因此bsinX (其中X=ax+π/3)的图像与sinx的图像相反
f(x)=bsin(ax+π/3)单调递减区间为
2kπ-π/2<=ax+π/3<=2kπ+π/2
f(x)=bsin(ax+π/3)单调递增区间为
2kπ+π/2<=ax+π/3<=2kπ+3π/2
则 当a=-2时 单调递减区间为 (-kπ-π/12, -kπ+5π/12)
单调递增区间为 (-kπ-7π/12,-kπ-π/12)
当a=2时 单调递减区间为 (kπ-5π/12,kπ+π/12)
单调递增区间为 (kπ+π/12,kπ+7π/12 )
求函数y=acosx+b(a b为常数)若y的最小值为-7最大值为1 求bsinx+acosx的最小值
设函数y=acosx+b(a,b是常数)的最大值为1,最小值为-7,则acosx+bsinx的最小值为多少?
已知函数y=acosx+b的最大值为1,最小值为-7,则函数y=acosx+bsinx的值域为?
求函数y=acosx+b的最大值和最小值
设函数y=acosx+b(a,b是常数)的最大值为1,最小值为-7,则acosx+bsinx的值域为如题
函数y=acosx+b(a,b为常数)的最小值为-7,最大值为1,则y=3+absinx的最大值为
函数y=a+Bcosx的最大值为1.最小值为负7,求y=B+acosx的最大值
设y=acosx+b的最大值为1最小值为-7 求acosx+bsinx的最值
若函数y=acosx+b(a,b为常数)的最大值为1,最小值为-7,则y=2+absinx的最大值
若函数y=acosx+b(a,b为常数)的最大值为1,最小值为-7,则y=3+absinx的最大值
函数y=(acosx+bsinx)*cosx有最大值2,最小值-1,求a、b的值
已知y=a+bsinx的最大值为1,最小值为-7,求函数y=b+acosx最大值(要过程)急
已知函数y=acosx+b的最大值为1,最小值为-3.求函数y=bcos2x+cosx+a的值域
已知函数y=acosx-2b的最小值为-2,最大值为4,求a和b的值
已知函数y=acosx+b的最大值为1,最小值为-3,确定函数f(x)=bsin(ax+π/3)
如果函数y=acosx+b的最小值为-1/2,最大值为3/2 则 a=_ b=_
已知函数y=acosx+b的最大值为1,最小值为-7,求a、b的值 怎么做,给个过程,谢谢
已知函数y=acosx+b的最大值为1,最小值为-3,试确定f(x)=bsin(ax+兀/3)的单调区间.