在四边形ABCD中.AB平行CD,且AB,CD的长是x的方程x²-2mx+(m-1/2)²+7/4=0的两

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 19:27:11
在四边形ABCD中.AB平行CD,且AB,CD的长是x的方程x²-2mx+(m-1/2)²+7/4=0的两
xWO"WWLl4300 }sӇlLM7E4~+誕J*1H?;31uw~%#cn/:/NyD%΍+ N[!(NOc3Mz*|߼)mYi)tbCrG->&(y7 Q"7ƀkzO˺h8tkKDVzڱhU H]F8"CPjUnln_1Nq\k1z:q:o6F6XP[DF= 9~vNHxF%%W; E8!rskQo;ג'|0s5s䥣ބd _t.] (8#8V<@ɱ'* \8"J=$;alpIe@p;#Sk)bv VDʇ ^ћ*F@\@:Q I c GL]^I̪ $lp>trC0<&k6zQmiIÇ[>4}m ?pi|UnԎߋse<(".~JEvzW&OdATdcba&Lx'bG!ɴ=^"sZNFºt4&m;0_<y$anDcRtqsC>%Jq*8DFaNj6G80#@6Wȡ5i 1Σj,/R

在四边形ABCD中.AB平行CD,且AB,CD的长是x的方程x²-2mx+(m-1/2)²+7/4=0的两
在四边形ABCD中.AB平行CD,且AB,CD的长是x的方程x²-2mx+(m-1/2)²+7/4=0的两

在四边形ABCD中.AB平行CD,且AB,CD的长是x的方程x²-2mx+(m-1/2)²+7/4=0的两
(2003•哈尔滨)已知:四边形ABCD中,AB∥CD,且AB、CD的长是关于x的方程x2-2mx+(m- 1/2)2+ 7/4=0的两个根.
(1)当m=2和m>2时,四边形ABCD分别是哪种四边形并说明理由.
(2)若M、N分别是AD、BC的中点,线段MN分别交AC、BD于点P、Q,PQ=1,且AB<CD,求AB、CD的长;
(3)在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan∠BDC和tan∠BCD.
(1)当m=2时,x2-4x+4=0.
∵△=0,方程有两个相等的实数根.
∴AB=CD,此时AB∥CD,则该四边形是平行四边形;
当m>2时,△=m-2>0,
又∵AB+CD=2m>0,
AB•CD=(m- 1/2)2+ 7/4>0,
∴AB≠CD.
该四边形是梯形.
(2)根据三角形的中位线定理可以证明:连接梯形的两条对角线的中点的线段等于梯形的上下底的差的一半.
则根据PQ=1,得CD-AB=2.
根据(1)中的AB+CD和AB•CD的式子得(2m)2-4(m2-m+2)=2,
∴m=3.
当m=3时,则有x2-6x+8=0,
∴x=2或x=4,
即AB=2,CD=4.
(3)根据该梯形是等腰梯形,平移一腰,则得到等边△BEC.
∴∠BCD=60°,∠BDC=30°.
∵tan∠BDC+tan∠BCD= 4√3/3,
tan∠BDC•tan∠BCD=1.
∴所求作的方程是y2- 4√3/3y+1=0.

题目不完整

解题思路:
(1)根据当m=2和m>2时,方程根的情况来进一步判断AB和CD的数量关系,结合其位置关系,判断该四边形的形状;
(2)根据梯形的对角线的中点所连接的线段等于上下底差的一半,结合根与系数的关系得到关于m的方程,从而求出方程的两个根;
(3)根据梯形的边之间的关系,求得这两个角的度数,再根据特殊角的锐角三角函数值写出这个一元二次方程.
解题过程:
...

全部展开

解题思路:
(1)根据当m=2和m>2时,方程根的情况来进一步判断AB和CD的数量关系,结合其位置关系,判断该四边形的形状;
(2)根据梯形的对角线的中点所连接的线段等于上下底差的一半,结合根与系数的关系得到关于m的方程,从而求出方程的两个根;
(3)根据梯形的边之间的关系,求得这两个角的度数,再根据特殊角的锐角三角函数值写出这个一元二次方程.
解题过程:
(1)当m=2时,x2-4x+4=0.
∵△=0,方程有两个相等的实数根.
∴AB=CD,此时AB∥CD,则该四边形是平行四边形;
当m>2时,△=m-2>0,
又∵AB+CD=2m>0,
AB•CD=(m- 12)2+ 74>0,
∴AB≠CD.
该四边形是梯形.
(2)根据三角形的中位线定理可以证明:连接梯形的两条对角线的中点的线段等于梯形的上下底的差的一半.
则根据PQ=1,得CD-AB=2.
根据(1)中的AB+CD和AB•CD的式子得(2m)2-4(m2-m+2)=2,
∴m=3.
当m=3时,则有x2-6x+8=0,
∴x=2或x=4,
即AB=2,CD=4.
(3)根据该梯形是等腰梯形,平移一腰,则得到等边△BEC.
∴∠BCD=60°,∠BDC=30°.
∵tan∠BDC+tan∠BCD= 433,
tan∠BDC•tan∠BCD=1.
∴所求作的方程是y2- 433y+1=0.

收起

1.原方程的解(x-m)2=m-2;
当m=2时,m-2=0,原方程有两个相同的解,AB=CD,有AB//CD,所以ABCD是平行四边形。
当m>2时,m-2>0,原方程有两个不同的解,∴AB≠CD,AB//CD,∴ABCD是梯形
2.由梯形中位线性质,MN//AB//CD
PN/AB=CN/BC=1/2,MQ/AB=DM/AB=1/2
MN=MQ+PN+Q...

全部展开

1.原方程的解(x-m)2=m-2;
当m=2时,m-2=0,原方程有两个相同的解,AB=CD,有AB//CD,所以ABCD是平行四边形。
当m>2时,m-2>0,原方程有两个不同的解,∴AB≠CD,AB//CD,∴ABCD是梯形
2.由梯形中位线性质,MN//AB//CD
PN/AB=CN/BC=1/2,MQ/AB=DM/AB=1/2
MN=MQ+PN+QP=AB+1
MN=(AB+CD)/2=AB+1
所以,AB+2=CD,AB!=CD,所以m>2
根据方程,[根号(m-2)]+m=m-[根号(m-2)]+2
[根号(m-2)]=1,m=3
AB=2
CD=4

收起

在四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC 在四边形ABCD中,AB平行CD,且AB+BC=CD+DA,求证四边形ABCD是平行四边形. 如图,已知在四边形ABCD中,∠B=∠C,AB与CD不平行,且AB=CD.求证:四边形ABCD是等腰梯形 在四边形abcd中,ad平行于bc,且ad+ab=bc+cd求证这个四边形是平行四边形 在四边形ABCD中,AB平行CD、AD平行BC,这个四边形是中心对称图形吗? 在四边形ABCD中,AB=CD,BC平行于AD,求证:四边形ABCD是平行四边形 在四边形ABCD中AB=CD,BC平行于AD,四边形ABCD是平行四边形吗? 如图在四边形ABCD中AB平行CD AE平分角BAD于点E且AB=EB求证:四边形ABCD是平行四边形 如图,在四边形ABCD中,三角形AB C全等三角形BAD 求证:AB平行CD 会做的来帮个忙RT1.在凸四边形ABCD中,AB与CD平行,且AB+BC=CD+DA,则( )(A).AD>BC (B).AD 在四边形ABCD中,AB平行CD,AB=CD,E.F为对角线AC上的两点,且AE=CF,求证∠ADF=∠CBE 梯形中位线逆命题证明!在四边形ABCD中,E,F为AD,BC中点且AB+CD=2EF求证:AB平行CD 梯形中位线逆命题证明!在四边形ABCD中,E,F为AD,BC中点且AB+CD=2EF求证:AB平行CD 梯形中位线逆命题证明!在四边形ABCD中,E,F为AD,BC中点且AB+CD=2EF求证:AB平行CD 梯形中位线逆命题证明!在四边形ABCD中,E,F为AD,BC中点且AB+CD=2EF求证:AB平行CD 在四边形ABCD中.AB平行CD.AC等于BD.讨论:四边形ABCD可能是什么形状的四边形? 初二平面几何数学题如图所示,四边形ABCD中,AB=CD,AC=BD,且AB不平行于CD,试问四边形ABCD是等腰梯形吗? 如图,在四边形ABCD中,AB平行CD,AD⊥DC,AB=BC,且AE⊥BC,求证AD=AE