如图,点P(x,y)是抛物线y=x^2上的一个动点,点A的坐标为(3,0),若三角形OPA的面积为S1)求出S与x的函数关系式;2)画出函数图象;3)探究:S是否存在最小值,若存在,请求出S的最小值,若存在请说明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:42:06
如图,点P(x,y)是抛物线y=x^2上的一个动点,点A的坐标为(3,0),若三角形OPA的面积为S1)求出S与x的函数关系式;2)画出函数图象;3)探究:S是否存在最小值,若存在,请求出S的最小值,若存在请说明
xS]O`+H~YI޳~ll*l2W1d1&0ඌ::1mOہ`"zUss{NM%]bҗXˎ[م5+dPfo/z?c)ȡ݊7n LG\@>j@$Fj-|W4Rm&zն( ]̰]:}(ns> m!:ck'e3\r?9C&`uqnJayG[#_rîV'fgF'R:-&?B<:WB.+x"O.$YJJrORCOx:13'DU9 .H

如图,点P(x,y)是抛物线y=x^2上的一个动点,点A的坐标为(3,0),若三角形OPA的面积为S1)求出S与x的函数关系式;2)画出函数图象;3)探究:S是否存在最小值,若存在,请求出S的最小值,若存在请说明
如图,点P(x,y)是抛物线y=x^2上的一个动点,点A的坐标为(3,0),若三角形OPA的面积为S
1)求出S与x的函数关系式;
2)画出函数图象;
3)探究:S是否存在最小值,若存在,请求出S的最小值,若存在请说明理由.

如图,点P(x,y)是抛物线y=x^2上的一个动点,点A的坐标为(3,0),若三角形OPA的面积为S1)求出S与x的函数关系式;2)画出函数图象;3)探究:S是否存在最小值,若存在,请求出S的最小值,若存在请说明
1)
S=1/2*OA*y=3y/2
y=2S/3
x^2=2S/3
2)
图略
3)
显然,x=0,即P在原点时,S最小=0

不存在最小值,S不能为零

第三问应该不存在最小值,因为是三角形,所以O、P两点不能重合且不能在同一条直线上,即S值可取无限小的正数,但不能取0,因为动点到原点时,就是直线了!