已知AB∥DE,AB=DE,AF=CD,∠CEF=90°(1)若∠ECF=30°,CF=8,求CE(2)求三角形ABF全等三角形DEC(3)求四边形BCEF是矩形(cos不能用)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:05:50
已知AB∥DE,AB=DE,AF=CD,∠CEF=90°(1)若∠ECF=30°,CF=8,求CE(2)求三角形ABF全等三角形DEC(3)求四边形BCEF是矩形(cos不能用)
xNQ_ŘҰ& B[M^Q[h V,I]| Kh՛MsfΜ̙LwkzQǒH"eTckq˛0 #=J*Ɵ< ?'5zcɇ8bd,1Haa%}EX<$>JDW` OG8UQ5U񇕀&(Z#Q"i\F)-Jj4IєTdI-D(aէbމf,>yaaa$~2vGHƓC89 .д2,Wp,G7ljV 4K+01iSs'vv73䃣$n˔[.IqQrG2:$I3oáYtqo %p8&](^q:UrG{=,/y͛;+Ah "hsrV-x >Vh5ǘڕJg* 2(yu~Mn)?ʅ_P|

已知AB∥DE,AB=DE,AF=CD,∠CEF=90°(1)若∠ECF=30°,CF=8,求CE(2)求三角形ABF全等三角形DEC(3)求四边形BCEF是矩形(cos不能用)
已知AB∥DE,AB=DE,AF=CD,∠CEF=90°
(1)若∠ECF=30°,CF=8,求CE
(2)求三角形ABF全等三角形DEC
(3)求四边形BCEF是矩形

(cos不能用)

已知AB∥DE,AB=DE,AF=CD,∠CEF=90°(1)若∠ECF=30°,CF=8,求CE(2)求三角形ABF全等三角形DEC(3)求四边形BCEF是矩形(cos不能用)

(1)
∵∠CEF=90°
∠ECF=30°
∴EF=1/2CF=1/2*8=4(30°所对直角边是斜边一半)
勾股定理得
CE=4√3
(2)
∵AB//DE
∴∠A=∠D(两直线平行,内错角相等)
∵AB=DE
AF=CD
∴△ABF≌△DEC(SAS)
(3)
∵△ABF≌△DEC
∴BF=EC
∴∠AFB=∠DCE
∴∠BFC=∠ECF(等角的补角相等)
∴BF//EC(内错角相等,两直线平行)
∴四边形BCEF是平行四边形
∵∠CEF=90°
∴平行四边形BCEF是矩形

(1)
∵∠CEF=90°
∠ECF=30°
∴EF=1/2CF=1/2*8=4(30°所对直角边是斜边一半)
勾股定理得
CE=4√3
(2)
∵AB//DE
∴∠A=∠D(两直线平行,内错角相等)
∵AB=DE
AF=CD
∴△ABF≌△DEC(SAS)
(3)
∵△ABF≌△DEC

全部展开

(1)
∵∠CEF=90°
∠ECF=30°
∴EF=1/2CF=1/2*8=4(30°所对直角边是斜边一半)
勾股定理得
CE=4√3
(2)
∵AB//DE
∴∠A=∠D(两直线平行,内错角相等)
∵AB=DE
AF=CD
∴△ABF≌△DEC(SAS)
(3)
∵△ABF≌△DEC
∴BF=EC
∴∠AFB=∠DCE
∴∠BFC=∠ECF(等角的补角相等)
∴BF//EC(内错角相等,两直线平行)
∴四边形BCEF是平行四边形
∵∠CEF=90°
∴平行四边形BCEF是矩形
如果你认可我的回答,请点击左下角的“采纳为满意答案”,祝学习进步!也可以
1.CE=8*cos30°=4根号3
2.∠A=∠D,AB=DE,AF=DC,所以全等
3.∠ECF=180-∠ECD=180-∠AFB=∠CFB,所以ED∥BF
又∠CEF=90°,所以BCEF是矩形

收起