高二数学必修5等差数列练习题已知函数f(x)=x/3x+1,数列(an)满足a1=1,an+1=f(an)(n属于N+)1.求数列(an)的通项公式2.记Sn=a1a2+a2a3+…+anan+1,求Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:53:32
高二数学必修5等差数列练习题已知函数f(x)=x/3x+1,数列(an)满足a1=1,an+1=f(an)(n属于N+)1.求数列(an)的通项公式2.记Sn=a1a2+a2a3+…+anan+1,求Sn
xRJ@ &Li n#PtS![) BmVio?$YI.Hf={H<nFywZnBl:i@=dT;cX56|POX#a;*=b?dBZ.pjA7lo~>ImI,4NpW׍_{Ha/0҉X߀7槍/k9\WzM@ҍMX. ԈnaC%W_\;qS4l]<n5ӂ$NT`VlL͇eET C;|@ka3aYxG].@jğQ9

高二数学必修5等差数列练习题已知函数f(x)=x/3x+1,数列(an)满足a1=1,an+1=f(an)(n属于N+)1.求数列(an)的通项公式2.记Sn=a1a2+a2a3+…+anan+1,求Sn
高二数学必修5等差数列练习题
已知函数f(x)=x/3x+1,数列(an)满足a1=1,an+1=f(an)(n属于N+)
1.求数列(an)的通项公式
2.记Sn=a1a2+a2a3+…+anan+1,求Sn

高二数学必修5等差数列练习题已知函数f(x)=x/3x+1,数列(an)满足a1=1,an+1=f(an)(n属于N+)1.求数列(an)的通项公式2.记Sn=a1a2+a2a3+…+anan+1,求Sn
(1)本题考查等差数列的性质.
a(n+1)=f(an)=an/(3an+1)
1/a(n+1)=1/an+3,1/a1=1.
显然,数列{1/an}是首项为1,公差为3的等差数列.
从而有1/an=1/a1+(n-1)d=3n-2,故an=1/(3n-2).
综上,数列{an}的通项公式为an=1/(3n-2).
(2)本题考查裂项相消求和法.
an×a(n+1)=1/(3n-2)(3n+1)=1/3×(1/(3n-2)-1/(3n+1))
Sn=1/3×(1-1/4+1/4-1/7+...+1/(3n-2)-1/(3n+1))
=1/3×(1-1/(3n+1))
=n/(3n+1)
综上,Sn=n/(3n+1).