函数f(x)对于任意ab属于R,都有f(a+b)=f(a)+f(b)-1且当x>0时f(x)>11,求证f(x)是R上的增函数2,若f(4)=5,解不等式 f(3m²-7)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 20:25:26
函数f(x)对于任意ab属于R,都有f(a+b)=f(a)+f(b)-1且当x>0时f(x)>11,求证f(x)是R上的增函数2,若f(4)=5,解不等式 f(3m²-7)
xTKn@HHȖ=Ǧ*R9Do`/+`e!Euh (T@D%TҺa*] cNI$xqmMx$" γl<]?`W 5t/Nc:mIɋZթD|$<=X˒gM@|jto?̒. 5grnp/Il0˥&u/`0.6qDNZ7AtLfl1+J;RU.W &Ԛ|KHAX-M[jĞ)D‘?jh1y"fEY2OF`3.']yG*m OvXAcXY'8QO@^Oʀ6n4]ذҍ_tUԒObgE[/3%rgIOZՆ#⢩Jvtmno!p$sO`3`y)|߄AGQ6h!qǗ㮻'|44?0

函数f(x)对于任意ab属于R,都有f(a+b)=f(a)+f(b)-1且当x>0时f(x)>11,求证f(x)是R上的增函数2,若f(4)=5,解不等式 f(3m²-7)
函数f(x)对于任意ab属于R,都有f(a+b)=f(a)+f(b)-1且当x>0时f(x)>1
1,求证f(x)是R上的增函数
2,若f(4)=5,解不等式 f(3m²-7)

函数f(x)对于任意ab属于R,都有f(a+b)=f(a)+f(b)-1且当x>0时f(x)>11,求证f(x)是R上的增函数2,若f(4)=5,解不等式 f(3m²-7)
1
∵f(a+b)=f(a)+f(b)-1
设x10
∴f(x2)=f(x2-x1+x1)=f(x2-x1)+f(x1)-1
∴f(x2)-f(x1)=f(x2-x1)-1
∵x>0时,f(x)>1
∴f(x2-x1)>1
∴f(x2-x1)-1>0
∴f(x2)-f(x1)>0
∴f(x2)>f(x1)
∴f(x)是R上的增函数
2
∵f(4)=5
f(4)=f(2)+f(2)-1
∴f(2)=3
∴不等式 f(3m²-7)

1)因为f(0)=f(0+0)=f(0)+f(0)-1
所以f(0)=1
因为f(0)=f(x-x)=f(x)+f(-x)-1
所以f(-x)=2-f(x)
设a>b,则a-b>0
有f(a-b)=f(a)+f(-b)-1=f(a)+2-f(b)-1=f(a)-f(b)+1
因为a-b>0,所以f(a-b)>1
因此,f(a-b)=f(a)-...

全部展开

1)因为f(0)=f(0+0)=f(0)+f(0)-1
所以f(0)=1
因为f(0)=f(x-x)=f(x)+f(-x)-1
所以f(-x)=2-f(x)
设a>b,则a-b>0
有f(a-b)=f(a)+f(-b)-1=f(a)+2-f(b)-1=f(a)-f(b)+1
因为a-b>0,所以f(a-b)>1
因此,f(a-b)=f(a)-(b)+1>1
即f(a)-f(b)>0对任意的a>b属于R成立
所以f(x)是严格单调增函数
2)f(4)=f(2+2)=f(2)+f(2)-1=5 所以 f(2)=3 因为f(x)是R上的增函数 所以原不等式可化为
f(3m²-7)<3=f(2) => 3m²-7<2 =>m²<3 =>-√3

收起

1.对于任意的a,b属于R,函数都满足f[af(b)]=ab,求 根号下f(1994)的平方 等于?2.x,y属于R,当x>0时,f(x)>1,对于任意的x,y属于R都有f(x+y)=f(x)f(y),证明该函数为增函数 定义在R+上的函数f(x)对于任意m,n属于R+,都有f(mn)=f(m)+f(n),x>1时,f(x) 函数f(x)对于任意ab属于R都有f(a+b)=f(a)*f(b) 且当x1(1)、求证:f(x)>0(2)、求证:f(x)减函数 已知函数f(x)对于任意xy属于r都有f(x+y)=f(X)+F(Y),且f(2)=4 则f(-1) 证明:函数f(x),x属于R,若对于任意实数a,b,都有f(a+b)=f(a)+f(b),求证f(x)为奇函数 函数F(X),X属于R,若对于任意实数A,B都有F(A+B)=F(A)+F(B).求证F(X)为奇函数 函数f(x)对于任意x属于R恒有f(x) 函数fx,x属于R,若对于任意实数a,b都有f(a+b)=f(a)+f(b),且当x>0时,f(x) 函数f(x),x属于R,若对于任意实数a,b都有f(a+b)=f(a)+(b)求证f(x)为奇函数 函数fx,x属于R,若对于任意实数a,b都有f(a+b)=f(a)+f(b),求证f(x)为奇函数 已知f(x)是定义在R上的函数,对于任意的x,y属于R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.判断函数的奇偶性 函数f(x)对于任意的m,n属于R,都有f(m+n)=f(m)+f(n)-1,且x>0时,f(x)>0,求证f(x)在R上为增函数 一道关于函数的单调性的练习题~~对于定义域是x属于R的任意奇函数f(x)都有 ( )A、f(x)-f(-x)>0B、f(x)-f(-x)0D、f(x) * f(-x) 已知函数f(x)是定义在R+上的函数,对于任意x,y属于R+,都有f(x)+f(y)=f(x*y),且当仅且x>1时,f(x) 函数奇偶性已知定义在R上的函数f(x)对于任意x,y属于R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0若存在常数c,使得f(2/c)=0,求证对于x属于R,有f(x+c)=-f(x)成立 函数f(x)对于任意ab属于R,都有f(a+b)=f(a)+f(b)-1且当x>0时f(x)>11,求证f(x)是R上的增函数2,若f(4)=5,解不等式 f(3m²-m-2) 函数f(x)对于任意ab属于R,都有f(a+b)=f(a)+f(b)-1且当x>0时f(x)>11,求证f(x)是R上的增函数2,若f(4)=5,解不等式 f(3m²-7) fx是定义在R上的函数,对于任意x,y属于R都有f(x+y)+f(x-y)=2[f(x)+f(y)],f(1)=2,f(2)=?