已知等比数列an中,如a2=2,a8=72 则a5=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 11:45:39
已知等比数列an中,如a2=2,a8=72 则a5=
xRN@.4%4&&2h.L$G\-3S\  +{ϙ{νߨ,IKmydR7wP.hyCm SkFGP3Te)eUl tiY)Z[ML q֠Z˗.{%ѱlu%K\3$< a l:JsU9%^T d;KzƢ БTȑ~:x{qsяT+,yb 6?<2

已知等比数列an中,如a2=2,a8=72 则a5=
已知等比数列an中,如a2=2,a8=72 则a5=

已知等比数列an中,如a2=2,a8=72 则a5=
a2=a1q
a8=a1q^7
a2a8=a1^2*q^8=(a1q^4)^2=a5^2=2*72=144
所以a5=12或-12

方法一\
由于a8=a1*q^7=72
a2=a1*q=2
a8/a2=q^6=72/2=36
故q^3=±根号36=±6
a5=a1*q^4=a1*q*q^3=a2*q^3=2*±6=±12
方法二\
由于a8/a5=a5/a2
故72/a5=a5/2
得a5^2=144
==>a5=±12

12

因为a2=2 a8=7为等比
所以a2a8=a5a5=14
(a5)^2=14
a5=正负根号14
题目没有说是正等比数列所以有两个值