当导数等于0且二阶导数等于0时是什么情况不是当f'(a)=0时f''(a)>0则x=a处有最小值 f''(a)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:43:42
当导数等于0且二阶导数等于0时是什么情况不是当f'(a)=0时f''(a)>0则x=a处有最小值 f''(a)
当导数等于0且二阶导数等于0时是什么情况
不是当f'(a)=0时f''(a)>0则x=a处有最小值 f''(a)
当导数等于0且二阶导数等于0时是什么情况不是当f'(a)=0时f''(a)>0则x=a处有最小值 f''(a)
注意,这里驻点求出的是极值而非最值.
当f'(a)=0且f''(a)=0时,不能通过二阶导数判断是否极值点,可通过泰勒展开来考虑,如果三阶导数不为0,则不是极值点(就像一阶导数不为0不是极值点一样——但是可能是最值点——主要是在边界有问题,所以有时候为了避免讨论边界,都限定在开区间中讨论,省去很多麻烦);如果三阶导数为0,则考虑4阶导数,当4阶导数不为0时,是极值点,判断方法同二阶导数;当4阶导数为0时,需考虑5阶导数,判断方法同三阶导数.
总体情况是,对于任意一点,最低阶的非零导数是奇数阶时,不是极值点;最低阶的非零导数是偶数阶时,是极值点,可以通过符号判断是极大值还是极小值.(这里的各阶导数不包括0阶导数即原函数)
写出泰勒公式就比较容易理解了.
顺带纠正一下,二阶导数为0并不一定是拐点,二阶导数变号的点(假定连续)才是拐点,只能够说拐点处的二阶导数为0,不能说二阶导数为0的点是拐点.
如果一阶导数是0,那么函数就是常函数f'(a)=0时f''(a)>0则x=a处有最大值 f''(a)<0时有最小值f'(a)=0时f''(a)>0则x=a处有最小值不是当f'(a)=0时f''(a)>0则x=a处有最小值 f''(a)<0时有最大值吗 那么f''(a)=0时是什么情况?f''(a)=0时是拐点上凹与下凹的拐点吗 且拐点的导数还为0?拐点是上凹与下凹的拐点,一阶导数等于0叫驻点...
全部展开
如果一阶导数是0,那么函数就是常函数
收起