已知定义在区间[0,2]上的两个函数f(x)和g(x),f(x)=x^2-2ax+4(a≥1),g(x)=2x/x+1.(1),求函数y=f(x)的最小值m(a)(2),若对任意x1.x2属于[0,2],f(x2)>g(x1)恒成立,求a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 07:13:14
已知定义在区间[0,2]上的两个函数f(x)和g(x),f(x)=x^2-2ax+4(a≥1),g(x)=2x/x+1.(1),求函数y=f(x)的最小值m(a)(2),若对任意x1.x2属于[0,2],f(x2)>g(x1)恒成立,求a的取值范围
xTn@~=J9`HUj/Mb)iC F(U iPÏI%ɉW'Tͥzgotb?=M*ӛ馆y~swwVOìBUV`ޤĄ&R vzu4a41iP UgAkS"oٰƊn^!UmQě^7J"V-@5T_X`5J??j12TϺtmAk 7~!@OE"~ȋu%e#fJ `~HnGf!?nuV<)bdD1=X Vp#kjDաIS0"YL跮@oհƓJ2O'3o! oXj ]G qzRZПBHJKx d '9- UNBDJV@Cu DeZ 惏nF[\}#n%EgqEn#!1h@57 vjvtڷ\P3'H;4y)Zdž&i>A n GP~>"d ompuh*T!o

已知定义在区间[0,2]上的两个函数f(x)和g(x),f(x)=x^2-2ax+4(a≥1),g(x)=2x/x+1.(1),求函数y=f(x)的最小值m(a)(2),若对任意x1.x2属于[0,2],f(x2)>g(x1)恒成立,求a的取值范围
已知定义在区间[0,2]上的两个函数f(x)和g(x),f(x)=x^2-2ax+4(a≥1),g(x)=2x/x+1.
(1),求函数y=f(x)的最小值m(a)
(2),若对任意x1.x2属于[0,2],f(x2)>g(x1)恒成立,求a的取值范围

已知定义在区间[0,2]上的两个函数f(x)和g(x),f(x)=x^2-2ax+4(a≥1),g(x)=2x/x+1.(1),求函数y=f(x)的最小值m(a)(2),若对任意x1.x2属于[0,2],f(x2)>g(x1)恒成立,求a的取值范围
(1)当1≤a≤2时 对称轴x=a 在区间 [0,2]在 则在对称轴处取得最小值4-a^2
当a>2时 f(x)在区间[0,2]上是递减函数 最小值在x=2时取得8-4a
(2)若对任意x1.x2属于[0,2],f(x2)>g(x1)恒成立则 f(x)>g(x)恒成立
当1≤a≤2时 f(x)最小值4-a^2 >g(x)的最大值
g(x)=2-2/(x+1)是递增函数 最大值为2-2/(2+1)=4/3 4-a^2>4/3 a^2>8/3 a>根号8/3或x5/3 所以a>2
综上所述1≤a<根号8/3或a>2

1)f(x)=(x-a)^2+4-a^2
对称轴x=a, 因为a>=1, 所以端点2比端点0更接近对称轴,所以 fmin=f(2)=8-4a
2)即f(x)>g(x) 在[0,2]上恒成立
f(x)的最小值为8-4a,
又g(x)=2x/(x+1)=2-2/(x+1)
得gmax=g(2)=2-2/3=4/3
所以有:8-4a>4/3,
即:1=

(1)当1≤a≤2时 对称轴x=a 在区间 [0,2]上,则在对称轴处取得最小值4-a^2
当a>2时 f(x)在区间[0,2]上是递减函数 最小值在x=2时取得8-4a
(2)分别取f(x)2个最小值去求,最后得出1≤a<根号下8/3或a>2

已知定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m) 已知函数f(x)是定义在(0,+∞)上的增函数,则函数f(-x^2+5x+6)的单调区间为 已知函数f(x)是定义在(0,+∞)上的增函数 则函数f(-x^2+5x+6)的单调区间为? 已知定义在R上的奇函数,f(x)满足f(X-4)=-f(x),且在区间【0,2】上是增函数,则A.f(-25) 已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )A、f(-25) 已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )A,f(-25) 已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数A f(—25) 已知定义在R上的奇函数f(x)满足f(x-4)= -f(x),且在区间【0,2】上是增函数,则A.f(-25) 已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=x²-2ax+4(a≥1),g(x)=x²/x+1.求函数的最小值m(a) 已知定义在R上的的函数f(-x)=-f(x),f(x-4)=-f(x),且在区间[0,2]上是减函数.若方程f(x)=k在区间[-8,8]上有两个不同的根,则这两根之和为()A.±8 B.±4 C.±6 D.±2 已知函数f(x)=x-1/x 1、用函数单调性的定义证明:函数f(x)在区间(0、正无穷大)上为增函数.2、当x属...已知函数f(x)=x-1/x1、用函数单调性的定义证明:函数f(x)在区间(0、正无穷大)上为增函数.2、当x 已知定义在[-2,2]上的偶函数f(x)在区间[0,2]上是单调增函数,若 f(1) 已知定义在实数集R上的偶函数f(x)在区间[0,正无穷)上是单调增函数则不等式f(2) 已知定义在R上的偶函数f(x)在区间[0,+∞)上是单调减函数,且f(2)=0. 已知函数f(x)是定义在[-2,2]上的偶函数,f(x)在区间[0,2]上是增函数,已知函数f(x)是定义在[-2,2]上的偶函数,f(x)在区间[0,2]上是增函数,且f(1-m)>f(1+2m),求实数m的取值范围. 已知函数f(x)是定义在[-2,2]上的偶函数,f(x)在区间[0,2]上是增函数,已知函数f(x)是定义在[-2,2]上的偶函数,f(x)在区间[0,2]上是增函数,且f(1-m)>f(1+2m),求实数m的取值范围. 高中数学函数! 已知定义在R 上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方高中数学函数! 已知定义在R 上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数. 已知定义在区间【-3,3】上的函数f(x)单调递增,则满足f(2x-1)