不等式|x-2|+|x-a|≥a对一切x∈R恒成立,则实数a的范围是什么.1小时解出来的100分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 05:02:00
不等式|x-2|+|x-a|≥a对一切x∈R恒成立,则实数a的范围是什么.1小时解出来的100分
xN@_F.u!| . `A"J"se+xf & |2cܳ3`DHhO:f:?#]\E~yH${&jiT M|M`.3:ԅ?@Vba5'֪{T vle僝sîT/ 펋sԾW |Zmb@(TjN$̬ˆB!)!1so}׉N df_#&;-X+.ζ[ ;i#a…ɂ.~J6k :S]yxt;

不等式|x-2|+|x-a|≥a对一切x∈R恒成立,则实数a的范围是什么.1小时解出来的100分
不等式|x-2|+|x-a|≥a对一切x∈R恒成立,则实数a的范围是什么.
1小时解出来的100分

不等式|x-2|+|x-a|≥a对一切x∈R恒成立,则实数a的范围是什么.1小时解出来的100分
|x-2|+|x-a|≥|x-2+(a-x)|=|2-a|
要使|x-2|+|x-a|≥a对一切x∈R恒成立
|2-a|必须大于或等于a,即:
|2-a|≥a
即:
2-a≥a或2-a≤-a
解不等式,得:
a≤1
所以a的取值范围是:a≤1.


在数轴上,|x-2|表示点x到点2之间的距离,|x-a|表示点x到点a之间的距离;
|x-2|+|x-a|就相当于是点x到2、a两点的距离和,当点x在点2与点a之间时,|x-2|+|x-a|获得最小值,为|a-2|;
要使|x-2|+|x-a|≥a对一切x∈R恒成立,则|x-2|+|x-a|的最小值|a-2|必须大于或等于a,即:
|a-2|≥a
即:...

全部展开


在数轴上,|x-2|表示点x到点2之间的距离,|x-a|表示点x到点a之间的距离;
|x-2|+|x-a|就相当于是点x到2、a两点的距离和,当点x在点2与点a之间时,|x-2|+|x-a|获得最小值,为|a-2|;
要使|x-2|+|x-a|≥a对一切x∈R恒成立,则|x-2|+|x-a|的最小值|a-2|必须大于或等于a,即:
|a-2|≥a
即:
a-2≥a或a-2≤-a
解不等式,得:
a≤1
所以a的取值范围是:a≤1。

收起