已知绝对值x-4+(y-9)^2=0试求(y-x/y+x)^2的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:01:11
已知绝对值x-4+(y-9)^2=0试求(y-x/y+x)^2的值
xSmKP+ &LmIR_6B PhQ+Ki^7>y99Q}\me#P|UB v`u(N *20#pk=ǥdq}lf'JkfR4Dd:a4sЀ6CQESL`bdŤ+y 6 L8T;ȝed4͍>u]TEJ|h=g?au6]e\U)K\w յ+Ǎ2ziɡc-[ey\40.CM8Йe"xM{ tUEF~>߶'ݩZ7xM-<"p! #1c8)AuЌƑAk.Hӗq^埬RΛ?f z&^+FQ

已知绝对值x-4+(y-9)^2=0试求(y-x/y+x)^2的值
已知绝对值x-4+(y-9)^2=0试求(y-x/y+x)^2的值

已知绝对值x-4+(y-9)^2=0试求(y-x/y+x)^2的值
∣x-4∣+(y-9)^2=0
因为∣x-4∣>=0,(y-9)^2>=0
所以x-4=0,y-9=0
x=4
y=9
[(y-x)/(y+x)]^2
=[(9-4)/(9+4)]^2
=(5/13)^2
=25/169

已知|x-4|+(y-9)²=0
那么x-4=0,y-9=0
所以x=4,y=9

所以(y-x/y+x)²=(9-4/9+4)²=(5/13)²=25/169
如果不懂,请追问,祝学习愉快!

绝对值x-4+(y-9)^2=0
∴x-4=0
y-9=0
∴x=4
y=9
∴(y-x/y+x)^2
=(9-4)²/(9+4)²
=25/169

绝对值x-4+(y-9)^2=0
所以x-4=0,y-9=0
x=4,y=9
所以原式=[(9-4)/(9+4)]²
=25/169

由非负数的性质得x=4,y=9.所以【(y-x)/(x+y】²=(5/13)²=25/169.。

∣x-4∣+(y-9)^2=0
只有∣x-4∣=0,(y-9)^2=0
x-4=0,y-9=0
x=4 y=9(y-x/y+x)^2=[(9-4)/(9+4)]^2
=(5/13)^2
=25/169