已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-1/2x-1上,且过点A(4,0)1.求这个抛物线解析式 2.设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形QPAB为梯形?若存在,求出B点坐标;若不存在请说

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:23:08
已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-1/2x-1上,且过点A(4,0)1.求这个抛物线解析式 2.设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形QPAB为梯形?若存在,求出B点坐标;若不存在请说
xTMOQ+&MAh ^֤1fH\ / ŏZ-F/7㊿{!Re7MW={_hf^rNdH7{z'w+;٠;vȊb՗%洗 OT<"鴷I9>婹:@^o!2Ԡ`>'B)G X򃒿[C4Zs \(J12@ݦ"@ ] }.I[2L}zH)[n`$L?_WEP$B 5= Q=C~ 1jɳ58w8erWO3fF{5}cBF宴Iߕ\0٧0O(_A tL`΃k J !

已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-1/2x-1上,且过点A(4,0)1.求这个抛物线解析式 2.设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形QPAB为梯形?若存在,求出B点坐标;若不存在请说
已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-1/2x-1上,且过点A(4,0)
1.求这个抛物线解析式 2.设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形QPAB为梯形?若存在,求出B点坐标;若不存在请说明理由。3.设点C(1,-3),请在抛物线的对称轴确定一点D,使|AD-CD|的值最大,请直接写出点D的坐标,

已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-1/2x-1上,且过点A(4,0)1.求这个抛物线解析式 2.设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形QPAB为梯形?若存在,求出B点坐标;若不存在请说
1)y=ax^2+bx=a(x+b/2a)^2-b^2/4a,即顶点为(-b/2a,-b^2/4a);
顶点在直线Y=(-1/2)X上,则-b^2/4a=(-1/2)*(-b/2a),b=0或-1(1);
又抛物线y=ax^2+bx过点(4,0),故b只能为-1;
且0=16a+4b,则a=1/4.
即抛物线解析式为:y=(1/4)x^2-x.
2)y=(1/4)x^2-x=(1/4)*(x-2)^2-1.即顶点为(2,-1);
当OB与PA平行时,设直线PA为Y=kx+b,则:
-1=2k+b(1);0=4k+b(2)
解之得:k=1/2,b=-2.即直线PA:y=(1/2)x-2.
则直线OB为:Y=(1/2)X.把Y=(1/2)x与Y=(1/4)x^2-x联立方程组得:x=6(x=0舍去),y=3;即B点为(6,3);
当AB与PO平行时,同时可求得:X=-2(X=4舍去),Y=3.
此时点B为(-2,3).
综上所述,抛物线上有两个符合条件的点B即(6,3)和(-2,3).
3)点C(1,-3)关于对称轴X=2的对称点C'为(3,-3),则AC'与对称轴X=2的交点即为所要求的点D,此时点D为(2,-6).

问题呢

第一题y=1/2x²-2x
第二题(-2,6)(6,6)

已知抛物线y=ax2+bx,当a>0,b 已知抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx,当a>0,b 如图,已知抛物线y=ax2+bx(a大于0)与 已知二次函数y=ax2+bx+c的系数满足a-b+c=0,则这条抛物线经过点? 已知抛物线y=ax2+bx经过点A(3,6)和点P(t,0)且t≠0 已知抛物线y=ax2+bx+3,经过A(3,0),B(4,1)两点,且与y轴交于点C.已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标 已知抛物线y=ax2+bx+c(a≠0)与x轴相交于不同的两点A(x1,0),B(x2,0),(x1 若抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2-4x+3的图象关于y轴对称,则函数y=ax2+bx+c的解析式为______. 已知抛物线y=ax2+bx+c的顶点O′(4,-3),且经过点A(1,0),求此抛物线的解析式. 已知抛物线y=ax2+bx+c过c(2,0)顶点d(0,-1)求抛物线的解析式 已知抛物线y=ax^2+bx+3(a不等于0)经过A(3,0)B(4,1)两点,且与Y轴交予点C已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C. (1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐 已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设 已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设