已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:52:20
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
x1n@E2%h%E,,m0B%pȅeY.GD &t\!3p~vU}kWvhh0}:XMlaOxW"L@PBʂN>BG6*&:3TQZ 4h0xM ,pE ,x\oUw5scHjc*qZbI Isq

已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n

已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
a(n+1)=4(n+1).an/(3an+n)
3an.a(n+1) + na(n+1) = 4(n+1)an
3 + n/an= 4(n+1)/a(n+1)
4(n+1) [ 1/a(n+1) -1/(n+1) ]= n[ 1/an -(1/n)]
[ 1/a(n+1) -(1/(n+1) ]/[ 1/an -(1/n)] = (1/4)[n/(n+1)]
[ 1/an -(1/n)]/[ 1/a(n-1) -(1/(n-1) ] = (1/4)[(n-1)/n]
[ 1/an -(1/n)]/[ 1/a1 -1/1 ] = (1/4)^(n-1) . (1/n)
1/an -(1/n) = -(1/n).(1/4)^n
1/an = (1/n) [ 1- (1/4)^n ]
an = n/[ 1- (1/4)^n]