已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:52:20
x1n@E2%h%E,,m0B%pȅeY.GD
&t\!3p~vU}kWvhh0}:XMlaOxW"L@PBʂN>BG6*&:3TQZ 4h0xM
,pE
,x\oUw5scHjc*qZbI Isq
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
a(n+1)=4(n+1).an/(3an+n)
3an.a(n+1) + na(n+1) = 4(n+1)an
3 + n/an= 4(n+1)/a(n+1)
4(n+1) [ 1/a(n+1) -1/(n+1) ]= n[ 1/an -(1/n)]
[ 1/a(n+1) -(1/(n+1) ]/[ 1/an -(1/n)] = (1/4)[n/(n+1)]
[ 1/an -(1/n)]/[ 1/a(n-1) -(1/(n-1) ] = (1/4)[(n-1)/n]
[ 1/an -(1/n)]/[ 1/a1 -1/1 ] = (1/4)^(n-1) . (1/n)
1/an -(1/n) = -(1/n).(1/4)^n
1/an = (1/n) [ 1- (1/4)^n ]
an = n/[ 1- (1/4)^n]
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
已知数列{an}满足3a(n+1)=2an-4,且a1=1/5,求an
已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an数列{an}满足:an>0,且根号下Sn=an+1/4,求通项an
已知数列[an]满足An+1=1+an /3-an ,且a1=1/3,求证数列[1/(an -1)]是等差数列,并求an
已知数列{an}满足a1=1 an+1=an/(3an+1) 则球an
已知数列{an}满足3an+1+an=4,a1=9,求通项公式.
已知数列{an}中满足(An+1-An)(An+1+An)=16,且a1=1,an
数列[An]满足An+1-An+3=0,且A1=-5.求An.
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足An+1=2^nAn,且A1=1,则通项an
已知数列{an}满足:an+1=an+n,且a61=2002,则a1等于
已知数列{an}满足an=an+1 -lg2,且a1=1,则通项公式为?
已知数列an满足an=4a(n-1)+3n-4,且a1=3,证明数列an+n为等比数列
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an
已知数列{an}满足a(n+1)=an+3n+2,且a1=2,求an=?
已知数列an满足a(n+1)=an+3n+2,且a1=2,求an
已知数列{an}满足a1=4,3an=5an(n下-1) +1,求an
已知数列an满足a1=1,a2=2,且an+2=4an+1-3an注an+2=4an+1-3an,an+2不是an加2 是n+2求证:数列an+1-an为等比数列求数列an的通项公式