抛物线y^2=4x,F为焦点,A,B,C ,为抛物线上的点,若向量FA+向量FC+向量FC=0,则,/FA/+/FB/+/FC/=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 22:48:41
抛物线y^2=4x,F为焦点,A,B,C ,为抛物线上的点,若向量FA+向量FC+向量FC=0,则,/FA/+/FB/+/FC/=
xQJ0~/[Iӊ76dM*k7`0Bn/4[4/wsNsrRƓخMBHX zЇ(5EY."V O h|\r?!50LlM\pZn+lVOo$)m:&rfZ0`6`EڪX*-łwن8$OϮLV%#+4ZtQ: ns#KR ivQy>_|

抛物线y^2=4x,F为焦点,A,B,C ,为抛物线上的点,若向量FA+向量FC+向量FC=0,则,/FA/+/FB/+/FC/=
抛物线y^2=4x,F为焦点,A,B,C ,为抛物线上的点,若向量FA+向量FC+向量FC=0,则,/FA/+/FB/+/FC/=

抛物线y^2=4x,F为焦点,A,B,C ,为抛物线上的点,若向量FA+向量FC+向量FC=0,则,/FA/+/FB/+/FC/=
F(1,0),准线x=-1
设A,B,C坐标分别为(x1,y1),(x2,y2),(x3,y3)
因为向量FA+向量FC+向量FC=0,所以F为三角形ABC的重心
由重心定理得(x1+x2+x3)/3=1{1是F横坐标};(y1+y2+y3)/3=0{0是F纵坐标}
所以x1+x2+x3=3
因为抛物线上的点到焦点距离=它到准线的距离
|FA|+|FB|+|FC|=(x1+1)+(x2+1)+(x3+1)=x1+x2+x3+3=3+3=6

设F为抛物线y^2=4x的焦点A,B,C为该抛物线上三点,若A(1,2)三角形ABC的重心与抛物线的焦点F重合,则BC边所在的直线方程 F为抛物线y^2=4x的焦点,A.B.C为该抛物线上三点,向量|FA|+|FB|+|FC|=? 已知抛物线C:y^2=4x的焦点为F 直线y=2x-4与C交与A.B两点 则COSAFB为. 已知抛物线c:y^2=4x的焦点为F,过F的直线l与c相交于两点A、B 求|AB|最小值 F是抛物线x^2=4y的焦点,设A、B为抛物线异于原点的两点,且满足FA垂直FB…F是抛物线x^2=4y的焦点,设A、B为抛物线异于原点的两点,且满足FA垂直FB,延长AF、AB分别交抛物线于C、D,求四边形ABCD面积的 已知抛物线C:x^2=4y的焦点为F,直线l过点F交抛物线C于A、B两点已知抛物线C:x^2=4y的焦点为F,直线l过点F交抛物线C于A、B两点(1)设A(x1,y1),B(x2,y2),求1/y1+1/y2的取值范围(2)是否存在定点Q, 设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若点A(1,2),△ABC的重心与抛物线的焦点F重合,则BC边所在直线方程为 设抛物线C:y^2=4x的焦点为F,过F点作直线交抛物线C于A,B两点,则三角形AOB的最小面积是()答案:2求详解 过抛物线Y^2=4x的焦点F作倾斜角为45度的直线,交抛物线于A,B两点(1) 求AB中点C到抛物线准线的距离(2) 求线段AB的长 设F是抛物线y^2=4x 的焦点,A,B为抛物线上异于原点的两点,FA与FB垂直,延长AF,BF分别交于抛物线C,D,求ABCD四边形的最大面积 已知A、B为抛物线C:y^2=4x上的不同两点,F为抛物线C的焦点,若FA=-4FB,则直线AB的斜率为? 已知A.B为抛物线C;y^2=4x上的不同两点,F为抛物线C的焦点,若向量FA=-4向量FB,则直线AB的斜率为 已知A.B为抛物线C;y^2=4x上的不同两点,F为抛物线C的焦点,若向量FA=-4向量FB,则直线AB的斜率为 【紧急求】已知抛物线c :y^2=4x,直线过抛物线的焦点f且与该抛物线交于a、b两点 (点a在第一象限) (...【紧急求】已知抛物线c :y^2=4x,直线过抛物线的焦点f且与该抛物线交于a、b两点 (点 若A为抛物线Y=1/4X^2的顶点,过抛物线焦点的直线交抛物线于B,C两点,则向量AB*AC=? 已知a,b为抛物线y=(x-c)(x-c-d)-2与x轴焦点的横坐标,a 已知抛物线C:y2(方)=4x的焦点为F,过点K(-1,0)的直线L与C相交于A.B两点,点A关于X轴的对称点为D.抛物线C:y^2=4x①的焦点为F(1,0),设过点K(-1,0)的直线L:x=my-1, 抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(-1,0),则|PF|/|PA|的最小值如题 抛物线y²=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(-1,0),则|PF|/|PA|的最小值为A.1/2 B.根号2/2 C.根