已知过点p(0,2)的直线l与抛物线y∧2=4x交于a,b两点,o为坐标原点.①若以ab为直径的园经过原点o求直线l的方程.②若线段ab的中垂线交x轴于点q求三角形poq面积的取值范围;

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 07:33:55
已知过点p(0,2)的直线l与抛物线y∧2=4x交于a,b两点,o为坐标原点.①若以ab为直径的园经过原点o求直线l的方程.②若线段ab的中垂线交x轴于点q求三角形poq面积的取值范围;
xV]Of+SQ8vbe%vɎcȒ4I4{WZZ `:H ԟa_6jR$}|>ss;C~6˭IkoS k:N5+FqKn2]pfYlnMM"Lټ(`r IeƼ,Rfu\kV fS y5SerYe7oJca[dޭ<P߭t? j|\ٰ'*8k:cdU2To@g( R}S:VУxZ.d*|Gqcxd$%Mkdn8;-D9g3OIU??f"% DCϤ8&ENN8cXVb,# Kk*bEjTTbEb*4c>>T6υ*&2#(BL,L6&8;탛2PґM8HC`0!>4FҖz΍e˾dS͍t@ZJ)R)A/2 a z 7 R;9.^*˼!/vNt]S/` ?v6܉8d0߉mT ;fu" Gm ٳ /^|zNÉS'(ɏ'vlk]*gRp)l\U!DVMTcX`2byWE qO/|& 1X0+c20dD:P8x?2~m|ӟ{zPdqfrOrr7σR3=3C#]4g(1=t`{|{

已知过点p(0,2)的直线l与抛物线y∧2=4x交于a,b两点,o为坐标原点.①若以ab为直径的园经过原点o求直线l的方程.②若线段ab的中垂线交x轴于点q求三角形poq面积的取值范围;
已知过点p(0,2)的直线l与抛物线y∧2=4x交于a,b两点,o为坐标原点.
①若以ab为直径的园经过原点o求直线l的方程.
②若线段ab的中垂线交x轴于点q求三角形poq面积的取值范围;

已知过点p(0,2)的直线l与抛物线y∧2=4x交于a,b两点,o为坐标原点.①若以ab为直径的园经过原点o求直线l的方程.②若线段ab的中垂线交x轴于点q求三角形poq面积的取值范围;
易知L斜率存在,且不为0
不妨设y=kx+2,A(x1,y1),B(x2,y2)

①易知该圆圆心即AB中点Q(x0,y0),x0=(x1+x2)/2,y0=(y1+y2)/2……①
由该圆以AB为直径,且过原点O,有lOQl=lAOl,即
√(x0²+y0²)=√[(x0-x1)²+(y0-y1)²]
两边平方,并将结论①代入,有
[(x1+x2)/2]²+[(y1+y2)/2]²=[(x2-x1)/2]²+[(y2-y1)/2]²
即x1x2+y1y2=0……②
由A,B在L:y=kx+2上,可知y1=kx1+2,y2=kx2+2,有
y1y2=k²x1x2+2k(x1+x2)+4……③
将L:y=kx+2代入抛物线方程,化简得到k²x²+(4k-4)x+4=0

由韦达定理,可得x1+x2=(4-4k)/k²,x1x2=4/k²……④
将结论③,④代入②,得到
4/k²+k²·4/k²+2k·(4-4k)/k²+4=0
即4/k²+8/k=0
两边同乘k²,有
4+8k=0
∴k=-1/2
综上,L:y=-1/2·x+2

②设q(m,0),易知
lOql=m
∴S△POq=m


易知,向量AB=(x2-x1,y2-y1),向量qQ=(<x2+x1>/2-m,<y2+y1>/2)
由AB⊥Qq,有
(x2-x1)(<x2+x1>/2-m)+(y2-y1)(<y2+y1>/2)=0
即(x2²-x1²+y2²-y1²)-m(x2-x1)=0
由题①中结论④,可知
x2²-x1²=
……我怀疑(0,+∞)呢..等我看完元宵晚会好撒..