已知f(x)=logaX a大于0 且a不等于1设f(a1),f(a2),f(an)是首项4公差2的等差数列已知F(x)=Logax(a大于0且不等于1),设F(a1),f(a2),...f(an)(n属于N*)是首项为4,公差为2的等差数列.(1)设a为常数求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 02:14:56
已知f(x)=logaX a大于0 且a不等于1设f(a1),f(a2),f(an)是首项4公差2的等差数列已知F(x)=Logax(a大于0且不等于1),设F(a1),f(a2),...f(an)(n属于N*)是首项为4,公差为2的等差数列.(1)设a为常数求
xTkAWLtт9$^zJC̥ BmhC Z iU6cdg79_L6YC^Aɼ_yoV %~Z5L0q!>adaP?дMT}s3mq$:4~mGc/ {ڰWn > &@cIs,*]|^ -f̠9fC(Z \?ď|![[

已知f(x)=logaX a大于0 且a不等于1设f(a1),f(a2),f(an)是首项4公差2的等差数列已知F(x)=Logax(a大于0且不等于1),设F(a1),f(a2),...f(an)(n属于N*)是首项为4,公差为2的等差数列.(1)设a为常数求
已知f(x)=logaX a大于0 且a不等于1设f(a1),f(a2),f(an)是首项4公差2的等差数列
已知F(x)=Logax(a大于0且不等于1),设F(a1),f(a2),...f(an)(n属于N*)是首项为4,公差为2的等差数列.(1)设a为常数求证{an}成等比数列
(2)若bn=an*f(an),(bn)的前n项和为sn 当a1=根号2时 求sn

已知f(x)=logaX a大于0 且a不等于1设f(a1),f(a2),f(an)是首项4公差2的等差数列已知F(x)=Logax(a大于0且不等于1),设F(a1),f(a2),...f(an)(n属于N*)是首项为4,公差为2的等差数列.(1)设a为常数求
1) f(an)=4+2(n-1)= 2n+2
log(a,an)=2n+2
an=a^(2n+2),a是常数
a(n+1) /an =a²
所以 ,{an}成等比数列;
2)a1 =根号2,a^4 =根号2,a=2^(1/8)
bn = an*f(an) = (2n+2)* a^(2n+2) = (2n+2)*2^[(n+1)/4]
利用错位相减法,
Sn=4*2^(2/4) +6*2^(3/4) +...+ (2n+2)*2^[(n+1)/4]
Sn *2^(1/4) = 4*2^(3/4) +...+ 2n *2^[(n+1)/4] + (2n+2)*2^[(n+2)/4]
两式相减,得
[1- 2^(1/4)]Sn =4*2^(2/4) +2*2^(3/4) +...+ 2*2^[(n+1)/4] - (2n+2)*2^[(n+2)/4]
所以,Sn=4*2^(2/4)+ 2*2^3/4 *[1-2^(n-1)/4]/[1-2^(3/4)]² - (2n+2)*2^[(n+2)/4]/[1-2^(3/4)]


F(x)=Logax(a大于0且不等于1),f(an) 公差为2的等差数列, 所以得 Loga(a2) - Loga(a1) =2 Loga(a3) - Loga(a2) =2 ……
Loga(an) - Loga(an-1) = 2 累加得到 Loga(an) - 4 =2n 又得 an=a^(2n+2), a是常数
所以{an}是以公比为a² 的等比数列

...