如图,在梯形ABCD中,AB‖CD,AB=7,CD=1,AD=BC=5,点M、N分别在边AD、BC上运动,并保持MN‖AB.ME⊥AB,NF⊥AB,垂足分别为E、F.(1)求梯形ABCD的面积;(2)求四边形MEFN的面积的最大值;(3)试判断四边形MEFN

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/13 11:06:43
如图,在梯形ABCD中,AB‖CD,AB=7,CD=1,AD=BC=5,点M、N分别在边AD、BC上运动,并保持MN‖AB.ME⊥AB,NF⊥AB,垂足分别为E、F.(1)求梯形ABCD的面积;(2)求四边形MEFN的面积的最大值;(3)试判断四边形MEFN
xUoTWJgL$y y/<|,R Ȁ u:JZJ[%ğrsĎUoHHs;νv~ \g4|nwpo[Q5}pO+jt%ZeVtYd.j/`!v~ىG+:^yE㓣~<]E SgÎQ1{k{u7ol@ZB;{ y:bgm6e{ս_ѿI0 ==Pm/=/Mr<:evX9t[?~:h(Ss*~l5LO`=C5R&BvZW ۪>Mϫ>^$\àF]YH%+%qIFLs"WxcEc* xIJ-Vĕ%R()a-6eRbću(|ZԒb`ymц_9qef*WB[' 4zW:8]Iken]|;5j8tsr4PB @7stgrFU;?)&Psi"~`{zRJ]Wy378bKl`QzKN>(F  dju4;' Nfӯ|0 #@]ȒV}doc,ܔBX(zyc <EY%Lj6w5i|oKuWf;*HMN C@1by&⣩ lsY9E%$̾(}$#}vDt˴)<67 &b` o_uwĢVƢ>ٽ8S[pc|Z)T0b>{F5eE,*$Qdx H$M_rX GQ  e6DAuYd

如图,在梯形ABCD中,AB‖CD,AB=7,CD=1,AD=BC=5,点M、N分别在边AD、BC上运动,并保持MN‖AB.ME⊥AB,NF⊥AB,垂足分别为E、F.(1)求梯形ABCD的面积;(2)求四边形MEFN的面积的最大值;(3)试判断四边形MEFN
如图,在梯形ABCD中,AB‖CD,AB=7,CD=1,AD=BC=5,点M、N分别在边AD、BC上运动,并保持MN‖AB.ME⊥AB,NF⊥AB,垂足分别为E、F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN的面积的最大值;
(3)试判断四边形MEFN能否为正方形,若能,求出四正方形MEFN的面积;若不能,请说明理由.

如图,在梯形ABCD中,AB‖CD,AB=7,CD=1,AD=BC=5,点M、N分别在边AD、BC上运动,并保持MN‖AB.ME⊥AB,NF⊥AB,垂足分别为E、F.(1)求梯形ABCD的面积;(2)求四边形MEFN的面积的最大值;(3)试判断四边形MEFN
(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H.
∵ AB‖CD,
∴ DG=CH,DG‖CH
∴ 四边形DGHC为矩形,GH=CD=1
∵ DG=CH,AD=BC,∠AGD=∠BHC=90°
∴ △AGD≌△BHC(HL).
∴ AG=BH=(AB-GH)/2=(7-1)/2=3
∵ 在Rt△AGD中,AG=3,AD=5
∴ DG=4.
∴ SABCD=(1+7)*4/2=16
(2)
∵ MN‖AB,ME⊥AB,NF⊥AB
∴ ME=NF,ME‖NF
∴ 四边形MEFN为矩形
∵ AB‖CD,AD=BC
∴ ∠A=∠B
∵ ME=NF,∠MEA=∠NFB=90°
∴ △MEA≌△NFB(AAS)
∴ AE=BF.
设AE=x,则EF=7-2x
∵ ∠A=∠A,∠MEA=∠DGA=90°
∴ △MEA∽△DGA
∴AE/AG=ME/DG
∴ ME=4x/3
∴ SMEFN=ME*EF=4x/3*(7-2x)=8/3*(X-7/4)^2+49/6
当x=7/4时,ME=7/3<4,
∴四边形MEFN面积的最大值为:49/6
(3)能
由(2)可知,设AE=x,则EF=7-2x,ME=4x/3
若四边形MEFN为正方形,则ME=EF
即4x/3=7-2x.
解得 x=21/10
∴ EF=7-2x=7-2*21/10=14/5<4
∴ 四边形MEFN能为正方形,
其面积为 S正方形MEFN=(14/5)^2=196/25